

Yardstick

	1. Yardstick Release Note
	1.1. Yardstick Release Notes

	2. Yardstick User Guide
	2.1. Introduction

	2.2. Methodology

	2.3. Architecture

	2.4. Yardstick Installation

	2.5. Yardstick Usage

	2.6. Installing a plug-in into Yardstick

	2.7. Store Other Project’s Test Results in InfluxDB

	2.8. Grafana dashboard

	2.9. Yardstick Restful API

	2.10. Yardstick User Interface

	2.11. Network Services Benchmarking (NSB)

	2.12. NSB Installation

	2.13. Yardstick - NSB Testing - Operation

	2.14. Update Spirent Landslide TG configuration in pod file

	2.15. Update NSB test case definitions

	2.16. Yardstick Test Cases

	2.17. NSB Sample Test Cases

	2.18. Glossary

	2.19. References

	3. Yardstick Developer Guide
	3.1. Introduction

	3.2. Yardstick developer areas

	3.3. How Todos?

	3.4. Backporting changes to stable branches

	3.5. Development guidelines

	3.6. Plugins

	3.7. Introduction

	3.8. Prerequisites

	3.9. Sample Prox Test Hardware Architecture

	3.10. Prox Test Architecture

	3.11. NSB Prox Test

	3.12. How to run NSB Prox Test on an baremetal environment

	3.13. How to run NSB Prox Test on an Openstack environment

	3.14. Frequently Asked Questions

1. Yardstick Release Note

	1.1. Yardstick Release Notes
	1.1.1. Abstract

	1.1.2. Version History

	1.1.3. Important Notes

	1.1.4. OPNFV Iruya Release

	1.1.5. Release Data

	1.1.6. Deliverables

	1.1.7. Version Change

	1.1.8. Scenario Matrix

	1.1.9. Test results

	1.1.10. Iruya 9.0.0 known restrictions/issues

	1.1.11. Useful links

	The Yardstick framework, the Yardstick test cases are open-source software,
	licensed under the terms of the Apache License, Version 2.0.

1.1. Yardstick Release Notes

1.1.1. Abstract

This document compiles the release notes for the Iruya release of OPNFV Yardstick.

1.1.2. Version History

	Date

	Version

	Comment

	Jan 10, 2020

	9.0.0

	Yardstick for Iruya release

1.1.3. Important Notes

The software delivered in the OPNFV Yardstick [https://wiki.opnfv.org/display/yardstick] Project, comprising the
Yardstick framework, and the Yardstick test cases is a realization of
the methodology in ETSI-ISG NFV-TST001 [https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf].

The Yardstick framework is installer, infrastructure and application
independent.

1.1.4. OPNFV Iruya Release

This Iruya release provides Yardstick as a framework for NFVI testing
and OPNFV feature testing, automated in the OPNFV CI pipeline, including:

	Documentation generated with Sphinx

	User Guide

	Developer Guide

	Release notes (this document)

	Results

	Automated Yardstick test suite (daily, weekly)

	Jenkins Jobs for OPNFV community labs

	Automated Yardstick test results visualization

	Dashboard [http://testresults.opnfv.org/grafana/] using Grafana (user:opnfv/password: opnfv), influxDB is used as
backend

	Yardstick framework source code

	Yardstick test cases yaml files

	Yardstick plug-in configuration yaml files, plug-in install/remove scripts

For Iruya release, the Yardstick framework is used for the following
testing:

	OPNFV platform testing - generic test cases to measure the categories:

	Compute

	Network

	Storage

	OPNFV platform network service benchmarking (NSB)

	NSB

	Test cases for the following OPNFV Projects:

	Container4NFV

	High Availability

	IPv6

	KVM

	Parser

	StorPerf

	VSperf

The Yardstick framework is developed in the OPNFV community, by the
Yardstick [https://wiki.opnfv.org/display/yardstick] team.

Note

The test case description template used for the Yardstick test cases
is based on the document ETSI-ISG NFV-TST001 [https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf]; the results report template
used for the Yardstick results is based on the IEEE Std 829-2008.

1.1.5. Release Data

	Project

	Yardstick

	Repo/tag

	yardstick/opnfv-9.0.0

	Yardstick Docker image tag

	opnfv-9.0.0

	Release designation

	Iruya 9.0

	Release date

	Jan 10, 2020

	Purpose of the delivery

	OPNFV Iruya 9.0.0

1.1.6. Deliverables

1.1.6.1. Documents

	User Guide: <yardstick:userguide>

	Developer Guide: <yardstick:devguide>

1.1.6.2. Software Deliverables

	The Yardstick Docker image: https://hub.docker.com/r/opnfv/yardstick (tag: opnfv-9.0.0)

1.1.6.2.1. List of Contexts

	Context

	Description

	Heat

	Models orchestration using OpenStack Heat

	Node

	Models Baremetal, Controller, Compute

	Standalone

	Models VM running on Non-Managed NFVi

	Kubernetes

	Models VM running on Non-Managed NFVi

1.1.6.2.2. List of Runners

	Runner

	Description

	Arithmetic

	Steps every run arithmetically according to specified
input value

	Duration

	Runs for a specified period of time

	Iteration

	Runs for a specified number of iterations

	IterationIPC

	Runs a configurable number of times before it
returns. Each iteration has a configurable timeout.

	Sequence

	Selects input value to a scenario from an input file
and runs all entries sequentially

	Dynamictp

	A runner that searches for the max throughput with
binary search

	Search

	A runner that runs a specific time before it returns

1.1.6.2.3. List of Scenarios

	Category

	Delivered

	Availability

	Attacker:

	baremetal, process

HA tools:

	check host, openstack, process, service

	kill process

	start/stop service

Monitor:

	command, process

	Compute

	
	cpuload

	cyclictest

	lmbench

	lmbench_cache

	perf

	unixbench

	ramspeed

	cachestat

	memeoryload

	computecapacity

	SpecCPU2006

	Networking

	
	iperf3

	netperf

	netperf_node

	ping

	ping6

	pktgen

	sfc

	sfc with tacker

	networkcapacity

	netutilization

	nstat

	pktgenDPDK

	Parser

	Tosca2Heat

	Storage

	
	fio

	bonnie++

	storagecapacity

	StorPerf

	storperf

	NSB

	vFW thoughput test case

1.1.6.3. New Test cases

opnfv_yardstick_tc015: Processing speed with impact on energy consumption
and CPU load.

The purpose of TC015 is to evaluate the IaaS compute performance with
regards to CPU processing speed with its impact on the energy consumption.
It measures score of single cpu running and parallel running. Energy
consumption and cpu load are monitored while the cpu test is running.
The purpose is also to be able to spot the trends. Test results, graphs
and similar shall be stored for comparison reasons and product evolution
understanding between different OPNFV versions and/or configurations,
different server types.

1.1.7. Version Change

1.1.7.1. Module Version Changes

This is the seventh tracked release of Yardstick. It is based on following
upstream versions:

	OpenStack Stein

1.1.7.2. Document Version Changes

This is the seventh tracked version of the Yardstick framework in OPNFV.
It includes the following documentation updates:

	Yardstick User Guide:

	Yardstick Developer Guide

	Yardstick Release Notes for Yardstick: this document

1.1.7.3. Feature additions

1.1.8. Scenario Matrix

1.1.9. Test results

Test results are available in:

	jenkins logs on CI: https://build.opnfv.org/ci/view/yardstick/

1.1.9.1. Known Issues/Faults

1.1.9.2. Corrected Faults

1.1.10. Iruya 9.0.0 known restrictions/issues

1.1.11. Useful links

	wiki project page: https://wiki.opnfv.org/display/yardstick/Yardstick

	wiki Yardstick Iruya release planning page: https://wiki.opnfv.org/display/yardstick/Release+Iruya

	Yardstick repo: https://git.opnfv.org/yardstick

	Yardstick CI dashboard: https://build.opnfv.org/ci/view/yardstick

	Yardstick grafana dashboard: http://testresults.opnfv.org/grafana/

	Yardstick IRC channel: #opnfv-yardstick

2. Yardstick User Guide

	2.1. Introduction
	2.1.1. About This Document

	2.1.2. Contact Yardstick

	2.2. Methodology
	2.2.1. Abstract

	2.2.2. ETSI-NFV

	2.2.3. Metrics

	2.3. Architecture
	2.3.1. Abstract

	2.3.2. Overview
	2.3.2.1. Architecture overview

	2.3.2.2. Concept

	2.3.2.3. Runner types

	2.3.3. Use-Case View

	2.3.4. Logical View

	2.3.5. Process View (Test execution flow)

	2.3.6. Deployment View

	2.3.7. Yardstick Directory structure

	2.4. Yardstick Installation
	2.4.1. Prerequisites

	2.4.2. Install Yardstick using Docker (first option) (recommended)
	2.4.2.1. Prepare the Yardstick container

	2.4.2.2. If the host is restarted

	2.4.2.3. Configure the Yardstick container environment
	2.4.2.3.1. Using the CLI command env prepare (first way) (recommended)

	2.4.2.3.2. Manually exporting the env variables and initializing OpenStack (second way)

	2.4.2.3.3. Automatic initialization of OpenStack (third way)

	2.4.2.4. The Yardstick container GUI

	2.4.2.5. Delete the Yardstick container

	2.4.3. Install Yardstick directly in Ubuntu (second option)
	2.4.3.1. Install Yardstick

	2.4.3.2. Configure the Yardstick environment (Todo)

	2.4.3.3. Uninstall Yardstick

	2.4.4. Install Yardstick directly in OpenSUSE
	2.4.4.1. Install Yardstick

	2.4.4.2. Configure the Yardstick environment

	2.4.4.3. Uninstall Yardstick

	2.4.5. Verify the installation

	2.4.6. Automatic installation of Yardstick
	2.4.6.1. Bare metal installation

	2.4.6.2. Container installation

	2.4.6.3. Parameters for install.yaml

	2.4.7. Deploy InfluxDB and Grafana using Docker
	2.4.7.1. Automatic deployment of InfluxDB and Grafana containers (recommended)

	2.4.7.2. Manual deployment of InfluxDB and Grafana containers

	2.4.8. Deploy InfluxDB and Grafana directly in Ubuntu (Todo)

	2.4.9. Proxy Support

	2.4.10. References

	2.5. Yardstick Usage
	2.5.1. Yardstick common CLI
	2.5.1.1. List test cases

	2.5.1.2. Show a test case config file

	2.5.1.3. Run a Yardstick test case

	2.5.2. Run Yardstick in a local environment

	2.5.3. Create a new testcase for Yardstick
	2.5.3.1. Defining the testcase scenarios

	2.5.3.2. Defining the testcase context(s)
	2.5.3.2.1. Dummy Context

	2.5.3.2.2. Node Context

	2.5.3.2.3. Heat Context

	2.5.3.2.4. Kubernetes Context

	2.5.3.2.5. Using multiple contexts in a testcase

	2.5.3.2.6. Reusing a context

	2.5.4. Create a test suite for Yardstick

	2.5.5. References

	2.6. Installing a plug-in into Yardstick
	2.6.1. Abstract

	2.6.2. Installing Storperf into Yardstick
	2.6.2.1. Step 0: Environment preparation

	2.6.2.2. Step 1: Plug-in configuration file preparation

	2.6.2.3. Step 2: Plug-in install/remove scripts preparation

	2.6.2.4. Step 3: Install and remove Storperf
	2.6.2.4.1. Removing Storperf from Yardstick

	2.7. Store Other Project’s Test Results in InfluxDB
	2.7.1. Abstract

	2.7.2. Store Storperf Test Results into Community’s InfluxDB

	2.8. Grafana dashboard
	2.8.1. Abstract

	2.8.2. Public access

	2.8.3. Testcase dashboard

	2.8.4. Administration access

	2.8.5. Add a dashboard into Yardstick Grafana

	2.9. Yardstick Restful API
	2.9.1. Abstract

	2.9.2. Available API
	2.9.2.1. /yardstick/env/action

	2.9.2.2. /yardstick/asynctask

	2.9.2.3. /yardstick/testcases

	2.9.2.4. /yardstick/testcases/release/action

	2.9.2.5. /yardstick/testcases/samples/action

	2.9.2.6. /yardstick/testcases/<testcase_name>/docs

	2.9.2.7. /yardstick/testsuites/action

	2.9.2.8. /yardstick/tasks/<task_id>/log

	2.9.2.9. /yardstick/results

	2.9.2.10. /api/v2/yardstick/openrcs

	2.9.2.11. /api/v2/yardstick/openrcs/<openrc_id>

	2.9.2.12. /api/v2/yardstick/pods

	2.9.2.13. /api/v2/yardstick/pods/<pod_id>

	2.9.2.14. /api/v2/yardstick/images

	2.9.2.15. /api/v2/yardstick/images/<image_id>

	2.9.2.16. /api/v2/yardstick/tasks

	2.9.2.17. /api/v2/yardstick/tasks/<task_id>

	2.9.2.18. /api/v2/yardstick/testcases

	2.9.2.19. /api/v2/yardstick/testcases/<case_name>

	2.9.2.20. /api/v2/yardstick/testsuites

	2.9.2.21. /api/v2/yardstick/testsuites

	2.9.2.22. /api/v2/yardstick/projects

	2.9.2.23. /api/v2/yardstick/projects

	2.9.2.24. /api/v2/yardstick/containers

	2.9.2.25. /api/v2/yardstick/containers/<container_id>

	2.10. Yardstick User Interface
	2.10.1. Commands

	2.10.2. Description

	2.11. Network Services Benchmarking (NSB)
	2.11.1. Abstract

	2.11.2. Overview

	2.11.3. Architecture
	2.11.3.1. Components of Network Service

	2.11.3.2. KPI Collection

	2.11.4. Graphical Overview
	2.11.4.1. VNFs supported for chracterization

	2.12. NSB Installation
	2.12.1. Abstract

	2.12.2. Prerequisites
	2.12.2.1. Hardware & Software Ingredients

	2.12.3. Install Yardstick (NSB Testing)
	2.12.3.1. Bare Metal context example

	2.12.3.2. Standalone context example for Ubuntu 18

	2.12.4. System Topology

	2.12.5. Environment parameters and credentials
	2.12.5.1. Configure yardstick.conf

	2.12.6. Run Yardstick - Network Service Testcases
	2.12.6.1. NS testing - using yardstick CLI

	2.12.7. Network Service Benchmarking - Bare-Metal
	2.12.7.1. Bare-Metal Config pod.yaml describing Topology
	2.12.7.1.1. Bare-Metal 2-Node setup

	2.12.7.1.2. Bare-Metal 3-Node setup - Correlated Traffic

	2.12.7.2. Bare-Metal Config pod.yaml

	2.12.8. Standalone Virtualization
	2.12.8.1. SR-IOV
	2.12.8.1.1. SR-IOV Pre-requisites

	2.12.8.1.2. SR-IOV Config pod.yaml describing Topology

	2.12.8.1.3. SR-IOV 2-Node setup

	2.12.8.1.4. SR-IOV 3-Node setup - Correlated Traffic

	2.12.8.1.5. SR-IOV Config pod_trex.yaml

	2.12.8.1.6. SR-IOV Config host_sriov.yaml

	2.12.8.1.7. SRIOV configuration options

	2.12.8.2. OVS-DPDK
	2.12.8.2.1. OVS-DPDK Pre-requisites

	2.12.8.2.2. OVS-DPDK Config pod.yaml describing Topology

	2.12.8.2.3. OVS-DPDK 2-Node setup

	2.12.8.2.4. OVS-DPDK 3-Node setup - Correlated Traffic

	2.12.8.2.5. OVS-DPDK Config pod_trex.yaml

	2.12.8.2.6. OVS-DPDK Config host_ovs.yaml

	2.12.8.2.7. OVS-DPDK configuration options

	2.12.9. OpenStack with SR-IOV support
	2.12.9.1. Single node OpenStack with external TG
	2.12.9.1.1. Host pre-configuration

	2.12.9.1.2. DevStack installation

	2.12.9.1.3. TG host configuration

	2.12.9.1.4. Run the Sample VNF test case

	2.12.9.2. Multi node OpenStack TG and VNF setup (two nodes)
	2.12.9.2.1. Controller/Compute pre-configuration

	2.12.9.2.2. DevStack configuration

	2.12.9.2.3. Run the sample vFW TC

	2.12.10. Enabling other Traffic generators
	2.12.10.1. IxLoad

	2.12.10.2. IxNetwork

	2.12.11. Spirent Landslide

	2.13. Yardstick - NSB Testing - Operation
	2.13.1. Abstract

	2.13.2. OpenStack Network Configuration
	2.13.2.1. Provider networks

	2.13.2.2. Heat Topologies

	2.13.2.3. Availability zone

	2.13.3. Collectd KPIs

	2.13.4. Scale-Up
	2.13.4.1. Heat

	2.13.4.2. Baremetal

	2.13.5. Scale-Out
	2.13.5.1. Standalone

	2.13.5.2. Heat

	2.13.6. Traffic Generator tuning

	2.13.7. Standalone configuration
	2.13.7.1. Emulated machine type

	2.13.7.2. Standalone with OVS-DPDK

	2.13.7.3. Sample test case file

	2.13.8. Preparing test run of vEPC test case

	2.14. Update Spirent Landslide TG configuration in pod file

	2.15. Update NSB test case definitions
	2.15.1. Preparing test run of vPE test case

	2.15.2. Preparing test run of vIPSEC test case

	2.15.3. Preparing test run of vCMTS test case
	2.15.3.1. Allow SSH access to the docker images

	2.15.3.2. Deploy the ConfigMaps for Pktgen and vCMTSd

	2.16. Yardstick Test Cases
	2.16.1. Abstract

	2.16.2. Generic NFVI Test Case Descriptions
	2.16.2.1. Yardstick Test Case Description TC001

	2.16.2.2. Yardstick Test Case Description TC002

	2.16.2.3. Yardstick Test Case Description TC004

	2.16.2.4. Yardstick Test Case Description TC005

	2.16.2.5. Yardstick Test Case Description TC006

	2.16.2.6. Yardstick Test Case Description TC008

	2.16.2.7. Yardstick Test Case Description TC009

	2.16.2.8. Yardstick Test Case Description TC010

	2.16.2.9. Yardstick Test Case Description TC011

	2.16.2.10. Yardstick Test Case Description TC012

	2.16.2.11. Yardstick Test Case Description TC014

	2.16.2.12. Yardstick Test Case Description TC015

	2.16.2.13. Yardstick Test Case Description TC024

	2.16.2.14. Yardstick Test Case Description TC037

	2.16.2.15. Yardstick Test Case Description TC038

	2.16.2.16. Yardstick Test Case Description TC042

	2.16.2.17. Yardstick Test Case Description TC043

	2.16.2.18. Yardstick Test Case Description TC044

	2.16.2.19. Yardstick Test Case Description TC055

	2.16.2.20. Yardstick Test Case Description TC061

	2.16.2.21. Yardstick Test Case Description TC063

	2.16.2.22. Yardstick Test Case Description TC069

	2.16.2.23. Yardstick Test Case Description TC070

	2.16.2.24. Yardstick Test Case Description TC071

	2.16.2.25. Yardstick Test Case Description TC072

	2.16.2.26. Yardstick Test Case Description TC073

	2.16.2.27. Yardstick Test Case Description TC074

	2.16.2.28. Yardstick Test Case Description TC075

	2.16.2.29. Yardstick Test Case Description TC076

	2.16.2.30. Yardstick Test Case Description TC078

	2.16.2.31. Yardstick Test Case Description TC079

	2.16.2.32. Yardstick Test Case Description TC080

	2.16.2.33. Yardstick Test Case Description TC081

	2.16.2.34. Yardstick Test Case Description TC083

	2.16.2.35. Yardstick Test Case Description TC084

	2.16.3. OPNFV Feature Test Cases
	2.16.3.1. H A
	2.16.3.1.1. Yardstick Test Case Description TC019

	2.16.3.1.2. Yardstick Test Case Description TC025

	2.16.3.1.3. Yardstick Test Case Description TC045

	2.16.3.1.4. Yardstick Test Case Description TC046

	2.16.3.1.5. Yardstick Test Case Description TC047

	2.16.3.1.6. Yardstick Test Case Description TC048

	2.16.3.1.7. Yardstick Test Case Description TC049

	2.16.3.1.8. Yardstick Test Case Description TC050

	2.16.3.1.9. Yardstick Test Case Description TC051

	2.16.3.1.10. Yardstick Test Case Description TC052

	2.16.3.1.11. Yardstick Test Case Description TC053

	2.16.3.1.12. Yardstick Test Case Description TC054

	2.16.3.1.13. Yardstick Test Case Description TC056

	2.16.3.1.14. Yardstick Test Case Description TC057

	2.16.3.1.15. Yardstick Test Case Description TC058

	2.16.3.1.16. Yardstick Test Case Description TC087

	2.16.3.1.17. Yardstick Test Case Description TC088

	2.16.3.1.18. Yardstick Test Case Description TC089

	2.16.3.1.19. Yardstick Test Case Description TC090

	2.16.3.1.20. Yardstick Test Case Description TC091

	2.16.3.1.21. Yardstick Test Case Description TC092

	2.16.3.1.22. Yardstick Test Case Description TC093

	2.16.3.2. IPv6
	2.16.3.2.1. Yardstick Test Case Description TC027

	2.16.3.3. KVM
	2.16.3.3.1. Yardstick Test Case Description TC028

	2.16.3.4. Parser
	2.16.3.4.1. Yardstick Test Case Description TC040

	2.16.3.5. StorPerf
	2.16.2.27. Yardstick Test Case Description TC074

	2.16.4. Templates
	2.16.4.1. Yardstick Test Case Description TCXXX

	2.16.4.2. Task Template Syntax
	2.16.4.2.1. Basic template syntax

	2.16.4.2.2. Using the default values

	2.16.4.2.3. Advanced templates

	2.17. NSB Sample Test Cases
	2.17.1. Abstract

	2.17.2. NSB PROX Test Case Descriptions
	2.17.2.1. Yardstick Test Case Description: NSB PROX ACL

	2.17.2.2. Yardstick Test Case Description: NSB PROX BNG

	2.17.2.3. Yardstick Test Case Description: NSB PROX BNG_QoS

	2.17.2.4. Yardstick Test Case Description: NSB PROX L2FWD

	2.17.2.5. Yardstick Test Case Description: NSB PROX L3FWD

	2.17.2.6. Yardstick Test Case Description: NSB PROX MPLS Tagging

	2.17.2.7. Yardstick Test Case Description: NSB PROX Packet Buffering

	2.17.2.8. Yardstick Test Case Description: NSB PROX Load Balancer

	2.17.2.9. Yardstick Test Case Description: NSB PROX VPE

	2.17.2.10. Yardstick Test Case Description: NSB PROX LwAFTR

	2.17.2.11. Yardstick Test Case Description: NSB EPC DEFAULT BEARER

	2.17.2.12. Yardstick Test Case Description: NSB EPC DEDICATED BEARER

	2.17.2.13. Yardstick Test Case Description: NSB EPC SAEGW RELOCATION

	2.17.2.14. Yardstick Test Case Description: NSB EPC NETWORK SERVICE REQUEST

	2.17.2.15. Yardstick Test Case Description: NSB EPC UE SERVICE REQUEST

	2.17.2.16. Yardstick Test Case Description: NSB vFW RFC2544

	2.17.2.17. Yardstick Test Case Description: NSB vFW RFC2544 (correlated)

	2.17.2.18. Yardstick Test Case Description: NSB vFW RFC3511 (HTTP)

	2.17.2.19. Yardstick Test Case Description: NSB VPP IPSEC

	2.17.2.20. Yardstick Test Case Description: NSB VIMS

	2.17.2.21. Yardstick Test Case Description: NSB vCMTS

	2.18. Glossary

	2.19. References
	2.19.1. OPNFV

	2.19.2. References used in Test Cases

	2.19.3. Research

	2.19.4. Standards

2.1. Introduction

Welcome to Yardstick’s documentation !

Yardstick [https://wiki.opnfv.org/display/yardstick] is an OPNFV Project.

The project’s goal is to verify infrastructure compliance, from the perspective
of a Virtual Network Function (VNF).

The Project’s scope is the development of a test framework, Yardstick, test
cases and test stimuli to enable Network Function Virtualization Infrastructure
(NFVI) verification.

Yardstick is used in OPNFV for verifying the OPNFV infrastructure and some of
the OPNFV features. The Yardstick framework is deployed in several OPNFV
community labs. It is installer, infrastructure and application
independent.

See also

Pharos [https://wiki.opnfv.org/display/pharos] for information on OPNFV community labs and this
Presentation [https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_yardstick_project.pdf?version=1&modificationDate=1458848320000&api=v2] for an overview of Yardstick

2.1.1. About This Document

This document consists of the following chapters:

	Chapter Introduction provides a brief introduction to Yardstick
project’s background and describes the structure of this document.

	Chapter Methodology describes the methodology implemented by the
Yardstick Project for NFVI verification.

	Chapter Architecture provides information on the software
architecture of Yardstick.

	Chapter Yardstick Installation provides instructions to install Yardstick.

	Chapter Yardstick Usage provides information on how to use Yardstick
to run and create testcases.

	Chapter Installing a plug-in into Yardstick provides information on how to integrate
other OPNFV testing projects into Yardstick.

	Chapter Store Other Project’s Test Results in InfluxDB provides inforamtion on how to run
plug-in test cases and store test results into community’s InfluxDB.

	Chapter Grafana dashboard provides inforamtion on Yardstick grafana
dashboard and how to add a dashboard into Yardstick grafana dashboard.

	Chapter Yardstick Restful API provides inforamtion on Yardstick ReST API and how to
use Yardstick API.

	Chapter Yardstick User Interface provides inforamtion on how to use
yardstick report CLI to view the test result in table format and also values
pinned on to a graph

	Chapter Network Services Benchmarking (NSB) describes the methodology implemented by the
Yardstick - Network service benchmarking to test real world usecase for a
given VNF.

	Chapter NSB Installation provides instructions to install
Yardstick - Network Service Benchmarking (NSB) testing.

	Chapter Yardstick - NSB Testing - Operation provides information on running NSB

	Chapter Yardstick Test Cases includes a list of available Yardstick test
cases.

2.1.2. Contact Yardstick

Feedback? Contact us

2.2. Methodology

2.2.1. Abstract

This chapter describes the methodology implemented by the Yardstick project for
verifying the NFVI from the perspective of a VNF.

2.2.2. ETSI-NFV

The document ETSI GS NFV-TST001 [http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf], “Pre-deployment Testing; Report on Validation
of NFV Environments and Services”, recommends methods for pre-deployment
testing of the functional components of an NFV environment.

The Yardstick project implements the methodology described in chapter 6, “Pre-
deployment validation of NFV infrastructure”.

The methodology consists in decomposing the typical VNF work-load
performance metrics into a number of characteristics/performance vectors, which
each can be represented by distinct test-cases.

The methodology includes five steps:

	
	Step1: Define Infrastruture - the Hardware, Software and corresponding
	configuration target for validation; the OPNFV infrastructure, in OPNFV
community labs.

	
	Step2: Identify VNF type - the application for which the
	infrastructure is to be validated, and its requirements on the underlying
infrastructure.

	
	Step3: Select test cases - depending on the workload that represents the
	application for which the infrastruture is to be validated, the relevant
test cases amongst the list of available Yardstick test cases.

	
	Step4: Execute tests - define the duration and number of iterations for the
	selected test cases, tests runs are automated via OPNFV Jenkins Jobs.

	Step5: Collect results - using the common API for result collection.

See also

Yardsticktst [https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_bridging_opnfv_and_etsi.pdf?version=1&modificationDate=1458848320000&api=v2] for material on alignment ETSI TST001 and Yardstick.

2.2.3. Metrics

The metrics, as defined by ETSI GS NFV-TST001, are shown in
Table1, Table2 and
Table3.

In OPNFV Colorado release, generic test cases covering aspects of the listed
metrics are available; further OPNFV releases will provide extended testing of
these metrics.
The view of available Yardstick test cases cross ETSI definitions in
Table1, Table2 and Table3
is shown in Table4.
It shall be noticed that the Yardstick test cases are examples, the test
duration and number of iterations are configurable, as are the System Under
Test (SUT) and the attributes (or, in Yardstick nomemclature, the scenario
options).

Table 1 - Performance/Speed Metrics

	Category

	Performance/Speed

	Compute

	
	Latency for random memory access

	Latency for cache read/write operations

	Processing speed (instructions per second)

	Throughput for random memory access (bytes per second)

	Network

	
	Throughput per NFVI node (frames/byte per second)

	Throughput provided to a VM (frames/byte per second)

	Latency per traffic flow

	Latency between VMs

	Latency between NFVI nodes

	Packet delay variation (jitter) between VMs

	Packet delay variation (jitter) between NFVI nodes

	Storage

	

	Sequential read/write IOPS

	Random read/write IOPS

	Latency for storage read/write operations

	Throughput for storage read/write operations

	Energy consumption in Watts (transversal to all others
scenario)

	Energy

Table 2 - Capacity/Scale Metrics

	Category

	Capacity/Scale

	Compute

	
	Number of cores and threads- Available memory size

	Cache size

	Processor utilization (max, average, standard deviation)

	Memory utilization (max, average, standard deviation)

	Cache utilization (max, average, standard deviation)

	Network

	
	Number of connections

	Number of frames sent/received

	Maximum throughput between VMs (frames/byte per second)

	Maximum throughput between NFVI nodes (frames/byte per second)

	Network utilization (max, average, standard deviation)

	Number of traffic flows

	Storage

	
	Storage/Disk size

	Capacity allocation (block-based, object-based)

	Block size

	Maximum sequential read/write IOPS

	Maximum random read/write IOPS

	Disk utilization (max, average, standard deviation)

Table 3 - Availability/Reliability Metrics

	Category

	Availability/Reliability

	Compute

	
	Processor availability (Error free processing time)

	Memory availability (Error free memory time)

	Processor mean-time-to-failure

	Memory mean-time-to-failure

	Number of processing faults per second

	Network

	
	NIC availability (Error free connection time)

	Link availability (Error free transmission time)

	NIC mean-time-to-failure

	Network timeout duration due to link failure

	Frame loss rate

	Storage

	
	Disk availability (Error free disk access time)

	Disk mean-time-to-failure

	Number of failed storage read/write operations per second

Table 4 - Yardstick Generic Test Cases

	Category

	Performance/Speed

	Capacity/Scale

	Availability/Reliability

	Compute

	TC003 1
TC004
TC010
TC012
TC014
TC015
TC069

	TC003 1
TC004
TC024
TC055

	TC013 1
TC015 1

	Network

	TC001
TC002
TC009
TC011
TC042
TC043

	TC044
TC073
TC075

	TC016 1
TC018 1

	Storage

	TC005

	TC063

	TC017 1

Note

The description in this OPNFV document is intended as a reference for
users to understand the scope of the Yardstick Project and the
deliverables of the Yardstick framework. For complete description of
the methodology, please refer to the ETSI document.

Footnotes

	1(1,2,3,4,5,6,7)

	To be included in future deliveries.

2.3. Architecture

2.3.1. Abstract

This chapter describes the Yardstick framework software architecture. We will
introduce it from Use Case View, Logical View, Process View and Deployment
View. More technical details will be introduced in this chapter.

2.3.2. Overview

2.3.2.1. Architecture overview

Yardstick is mainly written in Python, and test configurations are made
in YAML. Documentation is written in reStructuredText format, i.e. .rst
files. Yardstick is inspired by Rally. Yardstick is intended to run on a
computer with access and credentials to a cloud. The test case is described
in a configuration file given as an argument.

How it works: the benchmark task configuration file is parsed and converted
into an internal model. The context part of the model is converted into a Heat
template and deployed into a stack. Each scenario is run using a runner, either
serially or in parallel. Each runner runs in its own subprocess executing
commands in a VM using SSH. The output of each scenario is written as json
records to a file or influxdb or http server, we use influxdb as the backend,
the test result will be shown with grafana.

2.3.2.2. Concept

Benchmark - assess the relative performance of something

Benchmark configuration file - describes a single test case in yaml format

Context - The set of Cloud resources used by a scenario, such as user
names, image names, affinity rules and network configurations. A context is
converted into a simplified Heat template, which is used to deploy onto the
Openstack environment.

Data - Output produced by running a benchmark, written to a file in json
format

Runner - Logic that determines how a test scenario is run and reported, for
example the number of test iterations, input value stepping and test duration.
Predefined runner types exist for re-usage, see Runner types.

Scenario - Type/class of measurement for example Ping, Pktgen, (Iperf,
LmBench, …)

SLA - Relates to what result boundary a test case must meet to pass. For
example a latency limit, amount or ratio of lost packets and so on. Action
based on SLA can be configured, either just to log (monitor) or to stop
further testing (assert). The SLA criteria is set in the benchmark
configuration file and evaluated by the runner.

2.3.2.3. Runner types

There exists several predefined runner types to choose between when designing
a test scenario:

Arithmetic:
Every test run arithmetically steps the specified input value(s) in the
test scenario, adding a value to the previous input value. It is also possible
to combine several input values for the same test case in different
combinations.

Snippet of an Arithmetic runner configuration:

runner:
 type: Arithmetic
 iterators:
 -
 name: stride
 start: 64
 stop: 128
 step: 64

Duration:
The test runs for a specific period of time before completed.

Snippet of a Duration runner configuration:

runner:
 type: Duration
 duration: 30

Sequence:
The test changes a specified input value to the scenario. The input values
to the sequence are specified in a list in the benchmark configuration file.

Snippet of a Sequence runner configuration:

runner:
 type: Sequence
 scenario_option_name: packetsize
 sequence:
 - 100
 - 200
 - 250

Iteration:
Tests are run a specified number of times before completed.

Snippet of an Iteration runner configuration:

runner:
 type: Iteration
 iterations: 2

2.3.3. Use-Case View

Yardstick Use-Case View shows two kinds of users. One is the Tester who will
do testing in cloud, the other is the User who is more concerned with test
result and result analyses.

For testers, they will run a single test case or test case suite to verify
infrastructure compliance or bencnmark their own infrastructure performance.
Test result will be stored by dispatcher module, three kinds of store method
(file, influxdb and http) can be configured. The detail information of
scenarios and runners can be queried with CLI by testers.

For users, they would check test result with four ways.

If dispatcher module is configured as file(default), there are two ways to
check test result. One is to get result from yardstick.out (default path:
/tmp/yardstick.out), the other is to get plot of test result, it will be shown
if users execute command “yardstick-plot”.

If dispatcher module is configured as influxdb, users will check test
result on Grafana which is most commonly used for visualizing time series data.

If dispatcher module is configured as http, users will check test result
on OPNFV testing dashboard which use MongoDB as backend.

[image: Yardstick Use-Case View]

2.3.4. Logical View

Yardstick Logical View describes the most important classes, their
organization, and the most important use-case realizations.

Main classes:

TaskCommands - “yardstick task” subcommand handler.

HeatContext - Do test yaml file context section model convert to HOT,
deploy and undeploy Openstack heat stack.

Runner - Logic that determines how a test scenario is run and reported.

TestScenario - Type/class of measurement for example Ping, Pktgen, (Iperf,
LmBench, …)

Dispatcher - Choose user defined way to store test results.

TaskCommands is the “yardstick task” subcommand’s main entry. It takes yaml
file (e.g. test.yaml) as input, and uses HeatContext to convert the yaml
file’s context section to HOT. After Openstack heat stack is deployed by
HeatContext with the converted HOT, TaskCommands use Runner to run specified
TestScenario. During first runner initialization, it will create output
process. The output process use Dispatcher to push test results. The Runner
will also create a process to execute TestScenario. And there is a
multiprocessing queue between each runner process and output process, so the
runner process can push the real-time test results to the storage media.
TestScenario is commonly connected with VMs by using ssh. It sets up VMs and
run test measurement scripts through the ssh tunnel. After all TestScenaio
is finished, TaskCommands will undeploy the heat stack. Then the whole test is
finished.

[image: Yardstick framework architecture in Danube]

2.3.5. Process View (Test execution flow)

Yardstick process view shows how yardstick runs a test case. Below is the
sequence graph about the test execution flow using heat context, and each
object represents one module in yardstick:

[image: Yardstick Process View]
A user wants to do a test with yardstick. He can use the CLI to input the
command to start a task. “TaskCommands” will receive the command and ask
“HeatContext” to parse the context. “HeatContext” will then ask “Model” to
convert the model. After the model is generated, “HeatContext” will inform
“Openstack” to deploy the heat stack by heat template. After “Openstack”
deploys the stack, “HeatContext” will inform “Runner” to run the specific test
case.

Firstly, “Runner” would ask “TestScenario” to process the specific scenario.
Then “TestScenario” will start to log on the openstack by ssh protocal and
execute the test case on the specified VMs. After the script execution
finishes, “TestScenario” will send a message to inform “Runner”. When the
testing job is done, “Runner” will inform “Dispatcher” to output the test
result via file, influxdb or http. After the result is output, “HeatContext”
will call “Openstack” to undeploy the heat stack. Once the stack is
undepoyed, the whole test ends.

2.3.6. Deployment View

Yardstick deployment view shows how the yardstick tool can be deployed into the
underlying platform. Generally, yardstick tool is installed on JumpServer(see
07-installation for detail installation steps), and JumpServer is
connected with other control/compute servers by networking. Based on this
deployment, yardstick can run the test cases on these hosts, and get the test
result for better showing.

[image: Yardstick Deployment View]

2.3.7. Yardstick Directory structure

yardstick/ - Yardstick main directory.

	tests/ci/ - Used for continuous integration of Yardstick at different PODs and
	with support for different installers.

	docs/ - All documentation is stored here, such as configuration guides,
	user guides and Yardstick test case descriptions.

etc/ - Used for test cases requiring specific POD configurations.

	samples/ - test case samples are stored here, most of all scenario and
	feature samples are shown in this directory.

	tests/ - The test cases run to verify the NFVI (opnfv/) are stored here.
	The configurations of what to run daily and weekly at the different
PODs are also located here.

	tools/ - Contains tools to build image for VMs which are deployed by Heat.
	Currently contains how to build the yardstick-image with the
different tools that are needed from within the image.

plugin/ - Plug-in configuration files are stored here.

	yardstick/ - Contains the internals of Yardstick: Runners,
	Scenarios, Contexts, CLI
parsing, keys, plotting tools, dispatcher, plugin
install/remove scripts and so on.

	yardstick/tests - The Yardstick internal tests (functional/ and unit/)
	are stored here.

2.4. Yardstick Installation

Yardstick supports installation by Docker or directly in Ubuntu. The
installation procedure for Docker and direct installation are detailed in
the sections below.

To use Yardstick you should have access to an OpenStack environment, with at
least Nova, Neutron, Glance, Keystone and Heat installed.

The steps needed to run Yardstick are:

	Install Yardstick.

	Load OpenStack environment variables.

	Create Yardstick flavor.

	Build a guest image and load it into the OpenStack environment.

	Create the test configuration .yaml file and run the test case/suite.

2.4.1. Prerequisites

The OPNFV deployment is out of the scope of this document and can be found in
User Guide & Configuration Guide [http://docs.opnfv.org/en/latest/release/userguide.introduction.html]. The OPNFV platform is considered as the
System Under Test (SUT) in this document.

Several prerequisites are needed for Yardstick:

	A Jumphost to run Yardstick on

	A Docker daemon or a virtual environment installed on the Jumphost

	A public/external network created on the SUT

	Connectivity from the Jumphost to the SUT public/external network

Note

Jumphost refers to any server which meets the previous
requirements. Normally it is the same server from where the OPNFV
deployment has been triggered.

Warning

Connectivity from Jumphost is essential and it is of paramount
importance to make sure it is working before even considering to install
and run Yardstick. Make also sure you understand how your networking is
designed to work.

Note

If your Jumphost is operating behind a company http proxy and/or
Firewall, please first consult Proxy Support section which is towards
the end of this document. That section details some tips/tricks which may
be of help in a proxified environment.

2.4.2. Install Yardstick using Docker (first option) (recommended)

Yardstick has a Docker image. It is recommended to use this Docker image to run
Yardstick test.

2.4.2.1. Prepare the Yardstick container

Install docker on your guest system with the following command, if not done
yet:

wget -qO- https://get.docker.com/ | sh

Pull the Yardstick Docker image (opnfv/yardstick) from the public dockerhub
registry under the OPNFV account in dockerhub [https://hub.docker.com/r/opnfv/yardstick/], with the following docker
command:

sudo -EH docker pull opnfv/yardstick:stable

After pulling the Docker image, check that it is available with the
following docker command:

[yardsticker@jumphost ~]$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
opnfv/yardstick stable a4501714757a 1 day ago 915.4 MB

Run the Docker image to get a Yardstick container:

docker run -itd --privileged -v /var/run/docker.sock:/var/run/docker.sock \
 -p 8888:5000 --name yardstick opnfv/yardstick:stable

Description of the parameters used with docker run command

	Parameters

	Detail

	-itd

	-i: interactive, Keep STDIN open even if not
attached

	-t: allocate a pseudo-TTY detached mode, in the
background

	–privileged

	If you want to build yardstick-image in
Yardstick container, this parameter is needed

	-p 8888:5000

	Redirect the a host port (8888) to a container
port (5000)

	-v /var/run/docker.sock
:/var/run/docker.sock

	If you want to use yardstick env
grafana/influxdb to create a grafana/influxdb
container out of Yardstick container

	–name yardstick

	The name for this container

2.4.2.2. If the host is restarted

The yardstick container must be started if the host is rebooted:

docker start yardstick

2.4.2.3. Configure the Yardstick container environment

There are three ways to configure environments for running Yardstick, explained
in the following sections. Before that, access the Yardstick container:

docker exec -it yardstick /bin/bash

and then configure Yardstick environments in the Yardstick container.

2.4.2.3.1. Using the CLI command env prepare (first way) (recommended)

In the Yardstick container, the Yardstick repository is located in the
/home/opnfv/repos directory. Yardstick provides a CLI to prepare OpenStack
environment variables and create Yardstick flavor and guest images
automatically:

yardstick env prepare

Note

Since Euphrates release, the above command will not be able to
automatically configure the /etc/yardstick/openstack.creds file. So before
running the above command, it is necessary to create the
/etc/yardstick/openstack.creds file and save OpenStack environment
variables into it manually. If you have the openstack credential file saved
outside the Yardstick Docker container, you can do this easily by mapping the
credential file into Yardstick container using:

'-v /path/to/credential_file:/etc/yardstick/openstack.creds'

when running the Yardstick container. For details of the required OpenStack
environment variables please refer to section Export OpenStack environment
variables.

The env prepare command may take up to 6-8 minutes to finish building
yardstick-image and other environment preparation. Meanwhile if you wish to
monitor the env prepare process, you can enter the Yardstick container in a new
terminal window and execute the following command:

tail -f /var/log/yardstick/uwsgi.log

2.4.2.3.2. Manually exporting the env variables and initializing OpenStack (second way)

2.4.2.3.2.1. Export OpenStack environment variables

Before running Yardstick it is necessary to export OpenStack environment
variables:

source openrc

Environment variables in the openrc file have to include at least:

OS_AUTH_URL
OS_USERNAME
OS_PASSWORD
OS_PROJECT_NAME
EXTERNAL_NETWORK

A sample openrc file may look like this:

export OS_PASSWORD=console
export OS_PROJECT_NAME=admin
export OS_AUTH_URL=http://172.16.1.222:35357/v2.0
export OS_USERNAME=admin
export OS_VOLUME_API_VERSION=2
export EXTERNAL_NETWORK=net04_ext

2.4.2.3.2.2. Manual creation of Yardstick flavor and guest images

Before executing Yardstick test cases, make sure that Yardstick flavor and
guest image are available in OpenStack. Detailed steps about creating the
Yardstick flavor and building the Yardstick guest image can be found below.

Most of the sample test cases in Yardstick are using an OpenStack flavor called
yardstick-flavor which deviates from the OpenStack standard m1.tiny
flavor by the disk size; instead of 1GB it has 3GB. Other parameters are the
same as in m1.tiny.

Create yardstick-flavor:

openstack flavor create --disk 3 --vcpus 1 --ram 512 --swap 100 \
 yardstick-flavor

Most of the sample test cases in Yardstick are using a guest image called
yardstick-image which deviates from an Ubuntu Cloud Server image
containing all the required tools to run test cases supported by Yardstick.
Yardstick has a tool for building this custom image. It is necessary to have
sudo rights to use this tool.

Also you may need install several additional packages to use this tool, by
follwing the commands below:

sudo -EH apt-get update && sudo -EH apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where
Yardstick is installed:

export YARD_IMG_ARCH='amd64'
echo "Defaults env_keep += \'YARD_IMG_ARCH\'" | sudo tee --append \
 /etc/sudoers > /dev/null
sudo -EH tools/yardstick-img-modify tools/ubuntu-server-cloudimg-modify.sh

Warning

Before building the guest image inside the Yardstick container,
make sure the container is granted with privilege. The script will create files
by default in /tmp/workspace/yardstick and the files will be owned by root.

The created image can be added to OpenStack using the OpenStack client or via
the OpenStack Dashboard:

openstack image create --disk-format qcow2 --container-format bare \
 --public --file /tmp/workspace/yardstick/yardstick-image.img \
 yardstick-image

Some Yardstick test cases use a Cirros 0.3.5 [http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img] image and/or a Ubuntu 16.04 [https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-disk1.img]
image. Add Cirros and Ubuntu images to OpenStack:

openstack image create --disk-format qcow2 --container-format bare \
 --public --file $cirros_image_file cirros-0.3.5
openstack image create --disk-format qcow2 --container-format bare \
 --file $ubuntu_image_file Ubuntu-16.04

2.4.2.3.3. Automatic initialization of OpenStack (third way)

Similar to the second way, the first step is also to
Export OpenStack environment variables. Then the following steps should be
done.

2.4.2.3.3.1. Automatic creation of Yardstick flavor and guest images

Yardstick has a script for automatically creating Yardstick flavor and building
Yardstick guest images. This script is mainly used for CI and can be also used
in the local environment:

source $YARDSTICK_REPO_DIR/tests/ci/load_images.sh

2.4.2.4. The Yardstick container GUI

In Euphrates release, Yardstick implemented a GUI for Yardstick Docker
container. After booting up Yardstick container, you can visit the GUI at
<container_host_ip>:8888/gui/index.html.

For usage of Yardstick GUI, please watch our demo video at
Yardstick GUI demo [https://www.youtube.com/watch?v=M3qbJDp6QBk].

Note

The Yardstick GUI is still in development, the GUI layout and
features may change.

2.4.2.5. Delete the Yardstick container

If you want to uninstall Yardstick, just delete the Yardstick container:

sudo docker stop yardstick && docker rm yardstick

2.4.3. Install Yardstick directly in Ubuntu (second option)

Alternatively you can install Yardstick framework directly in Ubuntu or in an
Ubuntu Docker image. No matter which way you choose to install Yardstick, the
following installation steps are identical.

If you choose to use the Ubuntu Docker image, you can pull the Ubuntu
Docker image from Docker hub:

sudo -EH docker pull ubuntu:16.04

2.4.3.1. Install Yardstick

Prerequisite preparation:

sudo -EH apt-get update && sudo -EH apt-get install -y \
 git python-setuptools python-pip
sudo -EH easy_install -U setuptools==30.0.0
sudo -EH pip install appdirs==1.4.0
sudo -EH pip install virtualenv

Download the source code and install Yardstick from it:

git clone https://gerrit.opnfv.org/gerrit/yardstick
export YARDSTICK_REPO_DIR=~/yardstick
cd ~/yardstick
sudo -EH ./install.sh

If the host is ever restarted, nginx and uwsgi need to be restarted:

service nginx restart
uwsgi -i /etc/yardstick/yardstick.ini

2.4.3.2. Configure the Yardstick environment (Todo)

For installing Yardstick directly in Ubuntu, the yardstick env command is
not available. You need to prepare OpenStack environment variables and create
Yardstick flavor and guest images manually.

2.4.3.3. Uninstall Yardstick

For uninstalling Yardstick, just delete the virtual environment:

rm -rf ~/yardstick_venv

2.4.4. Install Yardstick directly in OpenSUSE

You can install Yardstick framework directly in OpenSUSE.

2.4.4.1. Install Yardstick

Prerequisite preparation:

sudo -EH zypper -n install -y gcc \
 wget \
 git \
 sshpass \
 qemu-tools \
 kpartx \
 libffi-devel \
 libopenssl-devel \
 python \
 python-devel \
 python-virtualenv \
 libxml2-devel \
 libxslt-devel \
 python-setuptools-git

Create a virtual environment:

virtualenv ~/yardstick_venv
export YARDSTICK_VENV=~/yardstick_venv
source ~/yardstick_venv/bin/activate
sudo -EH easy_install -U setuptools

Download the source code and install Yardstick from it:

git clone https://gerrit.opnfv.org/gerrit/yardstick
export YARDSTICK_REPO_DIR=~/yardstick
cd yardstick
sudo -EH python setup.py install
sudo -EH pip install -r requirements.txt

Install missing python modules:

sudo -EH pip install pyyaml \
 oslo_utils \
 oslo_serialization \
 oslo_config \
 paramiko \
 python.heatclient \
 python.novaclient \
 python.glanceclient \
 python.neutronclient \
 scp \
 jinja2

2.4.4.2. Configure the Yardstick environment

Source the OpenStack environment variables:

source DEVSTACK_DIRECTORY/openrc

Export the Openstack external network. The default installation of Devstack
names the external network public:

export EXTERNAL_NETWORK=public
export OS_USERNAME=demo

Change the API version used by Yardstick to v2.0 (the devstack openrc sets it
to v3):

export OS_AUTH_URL=http://PUBLIC_IP_ADDRESS:5000/v2.0

2.4.4.3. Uninstall Yardstick

For unistalling Yardstick, just delete the virtual environment:

rm -rf ~/yardstick_venv

2.4.5. Verify the installation

It is recommended to verify that Yardstick was installed successfully
by executing some simple commands and test samples. Before executing Yardstick
test cases make sure yardstick-flavor and yardstick-image can be found
in OpenStack and the openrc file is sourced. Below is an example invocation
of Yardstick help command and ping.py test sample:

yardstick -h
yardstick task start samples/ping.yaml

Note

The above commands could be run in both the Yardstick container and
the Ubuntu directly.

Each testing tool supported by Yardstick has a sample configuration file.
These configuration files can be found in the samples directory.

Default location for the output is /tmp/yardstick.out.

2.4.6. Automatic installation of Yardstick

Automatic installation can be used as an alternative to the manual by
providing parameters for ansible script install.yaml in a nsb_setup.sh
file. Yardstick can be installed on the bare metal and to the container. Yardstick
container can be either pulled or built.

2.4.6.1. Bare metal installation

Modify nsb_setup.sh file install.yaml parameters to install Yardstick
on Ubuntu server:

ansible-playbook -i install-inventory.ini install.yaml \
-e IMAGE_PROPERTY='none' \
-e YARDSTICK_DIR=<path to Yardstick folder>

Note

By default INSTALLATION_MODE is baremetal.

Note

No modification in install-inventory.ini is needed for Yardstick
installation.

Note

To install Yardstick in virtual environment pass parameter
-e VIRTUAL_ENVIRONMENT=True.

2.4.6.2. Container installation

Modify install.yaml parameters in nsb_setup.sh file to pull or build
Yardstick container. To pull Yardstick image and start container run:

ansible-playbook -i install-inventory.ini install.yaml \
-e IMAGE_PROPERTY='none' \
-e INSTALLATION_MODE=container_pull

Note

Yardstick docker image is available for both Ubuntu 16.04 and Ubuntu
18.04. By default Ubuntu 16.04 based docker image is used. To use
Ubuntu 18.04 based docker image pass -i opnfv/yardstick-ubuntu-18.04
parameter to nsb_setup.sh.

To build Yardstick image modify Dockerfile as per comments in it and run:

cd yardstick
docker build -f docker/Dockerfile -t opnfv/yardstick:<tag> .

Note

Yardstick docker image based on Ubuntu 16.04 will be built.
Pass -f docker/Dockerfile_ubuntu18 to build Yardstick docker image based
on Ubuntu 18.04.

Note

Add --build-arg http_proxy=http://<proxy_host>:<proxy_port> to
build docker image if server is behind the proxy.

2.4.6.3. Parameters for install.yaml

Description of the parameters used with install.yaml:

	Parameters

	Detail

	-i install-inventory.ini

	
Installs package dependency to remote servers

and localhost

Mandatory parameter

By default no remote servers are provided

	-e YARDSTICK_DIR

	
Path to Yardstick folder

Mandatory parameter for Yardstick bare metal

installation

	-e INSTALLATION_MODE

	
baremetal: Yardstick is installed to the bare
metal

Default parameter

	
container: Yardstick is installed in container

Container is built from Dockerfile

	
container_pull: Yardstick is installed in

container

Container is pulled from docker hub

	-e OS_RELEASE

	
xenial or bionic: Ubuntu version to be used for

VM image (nsb or normal)

Default is Ubuntu 16.04, xenial

	-e IMAGE_PROPERTY

	
nsb: Build Yardstick NSB VM image

Used to run Yardstick NSB tests on sample VNF

Default parameter

	
normal: Build VM image to run ping test in

OpenStack

	
none: don’t build a VM image.

	-e VIRTUAL_ENVIRONMENT

	
False or True: Whether install in virtualenv

Default is False

	-e YARD_IMAGE_ARCH

	
CPU architecture on servers

Default is ‘amd64’

2.4.7. Deploy InfluxDB and Grafana using Docker

Without InfluxDB, Yardstick stores results for running test case in the file
/tmp/yardstick.out. However, it’s inconvenient to retrieve and display
test results. So we will show how to use InfluxDB to store data and use
Grafana to display data in the following sections.

2.4.7.1. Automatic deployment of InfluxDB and Grafana containers (recommended)

	Enter the Yardstick container:

sudo -EH docker exec -it yardstick /bin/bash

	Create InfluxDB container and configure with the following command:

yardstick env influxdb

	Create and configure Grafana container:

yardstick env grafana

Then you can run a test case and visit http://host_ip:1948
(admin/admin) to see the results.

Note

Executing yardstick env command to deploy InfluxDB and Grafana
requires Jumphost’s docker API version => 1.24. Run the following command to
check the docker API version on the Jumphost:

docker version

2.4.7.2. Manual deployment of InfluxDB and Grafana containers

You can also deploy influxDB and Grafana containers manually on the Jumphost.
The following sections show how to do.

Pull docker images:

sudo -EH docker pull tutum/influxdb
sudo -EH docker pull grafana/grafana

Run influxDB:

sudo -EH docker run -d --name influxdb \
 -p 8083:8083 -p 8086:8086 --expose 8090 --expose 8099 \
 tutum/influxdb

Configure influxDB:

docker exec -it influxdb influx
 > CREATE USER root WITH PASSWORD 'root' WITH ALL PRIVILEGES
 > CREATE DATABASE yardstick;
 > use yardstick;
 > show MEASUREMENTS;
 > exit

Run Grafana:

sudo -EH docker run -d --name grafana -p 1948:3000 grafana/grafana

Log on to http://{YOUR_IP_HERE}:1948 using admin/admin and configure
database resource to be {YOUR_IP_HERE}:8086.

[image: Grafana data source configuration]
Configure yardstick.conf:

sudo -EH docker exec -it yardstick /bin/bash
sudo cp etc/yardstick/yardstick.conf.sample /etc/yardstick/yardstick.conf
sudo vi /etc/yardstick/yardstick.conf

Modify yardstick.conf to add the influxdb dispatcher:

[DEFAULT]
debug = True
dispatcher = influxdb

[dispatcher_influxdb]
timeout = 5
target = http://{YOUR_IP_HERE}:8086
db_name = yardstick
username = root
password = root

Now Yardstick will store results in InfluxDB when you run a testcase.

2.4.8. Deploy InfluxDB and Grafana directly in Ubuntu (Todo)

2.4.9. Proxy Support

To configure the Jumphost to access Internet through a proxy its necessary to
export several variables to the environment, contained in the following
script:

#!/bin/sh
_proxy=<proxy_address>
_proxyport=<proxy_port>
_ip=$(hostname -I | awk '{print $1}')

export ftp_proxy=http://$_proxy:$_proxyport
export FTP_PROXY=http://$_proxy:$_proxyport
export http_proxy=http://$_proxy:$_proxyport
export HTTP_PROXY=http://$_proxy:$_proxyport
export https_proxy=http://$_proxy:$_proxyport
export HTTPS_PROXY=http://$_proxy:$_proxyport
export no_proxy=127.0.0.1,localhost,$_ip,$(hostname),<.localdomain>
export NO_PROXY=127.0.0.1,localhost,$_ip,$(hostname),<.localdomain>

To enable Internet access from a container using docker, depends on the OS
version. On Ubuntu 14.04 LTS, which uses SysVinit, /etc/default/docker must
be modified:

.......
If you need Docker to use an HTTP proxy, it can also be specified here.
export http_proxy="http://<proxy_address>:<proxy_port>/"
export https_proxy="https://<proxy_address>:<proxy_port>/"

Then its necessary to restart the docker service:

sudo -EH service docker restart

In Ubuntu 16.04 LTS, which uses Systemd, its necessary to create a drop-in
directory:

sudo mkdir /etc/systemd/system/docker.service.d

Then, the proxy configuration will be stored in the following file:

cat /etc/systemd/system/docker.service.d/http-proxy.conf
[Service]
Environment="HTTP_PROXY=https://<proxy_address>:<proxy_port>/"
Environment="HTTPS_PROXY=https://<proxy_address>:<proxy_port>/"
Environment="NO_PROXY=localhost,127.0.0.1,<localaddress>,<.localdomain>"

The changes need to be flushed and the docker service restarted:

sudo systemctl daemon-reload
sudo systemctl restart docker

Any container is already created won’t contain these modifications. If needed,
stop and delete the container:

sudo docker stop yardstick
sudo docker rm yardstick

Warning

Be careful, the above rm command will delete the container
completely. Everything on this container will be lost.

Then follow the previous instructions Prepare the Yardstick container to
rebuild the Yardstick container.

2.4.10. References

2.5. Yardstick Usage

Once you have yardstick installed, you can start using it to run testcases
immediately, through the CLI. You can also define and run new testcases and
test suites. This chapter details basic usage (running testcases), as well as
more advanced usage (creating your own testcases).

2.5.1. Yardstick common CLI

2.5.1.1. List test cases

yardstick testcase list: This command line would list all test cases in
Yardstick. It would show like below:

+---
| Testcase Name | Description
+---
| opnfv_yardstick_tc001 | Measure network throughput using pktgen
| opnfv_yardstick_tc002 | measure network latency using ping
| opnfv_yardstick_tc005 | Measure Storage IOPS, throughput and latency using fio.
...
+---

2.5.1.2. Show a test case config file

Take opnfv_yardstick_tc002 for an example. This test case measure network
latency. You just need to type in yardstick testcase show
opnfv_yardstick_tc002, and the console would show the config yaml of this
test case:

schema: "yardstick:task:0.1"
description: >
 Yardstick TC002 config file;
 measure network latency using ping;

{% set image = image or "cirros-0.3.5" %}

{% set provider = provider or none %}
{% set physical_network = physical_network or 'physnet1' %}
{% set segmentation_id = segmentation_id or none %}
{% set packetsize = packetsize or 100 %}

scenarios:
{% for i in range(2) %}
-
 type: Ping
 options:
 packetsize: {{packetsize}}
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 10

 sla:
 max_rtt: 10
 action: monitor
{% endfor %}

context:
 name: demo
 image: {{image}}
 flavor: yardstick-flavor
 user: cirros

 placement_groups:
 pgrp1:
 policy: "availability"

 servers:
 athena:
 floating_ip: true
 placement: "pgrp1"
 ares:
 placement: "pgrp1"

 networks:
 test:
 cidr: '10.0.1.0/24'
 {% if provider == "vlan" or provider == "sriov" %}
 provider: {{provider}}
 physical_network: {{physical_network}}
 {% if segmentation_id %}
 segmentation_id: {{segmentation_id}}
 {% endif %}
 {% endif %}

2.5.1.3. Run a Yardstick test case

If you want run a test case, then you need to use yardstick task start
<test_case_path> this command support some parameters as below:

	Parameters

	Detail

	-d

	show debug log of yardstick running

	–task-args

	If you want to customize test case parameters,
use “–task-args” to pass the value. The format
is a json string with parameter key-value pair.

	–task-args-file

	If you want to use yardstick
env prepare command(or
related API) to load the

	–parse-only

	

	–output-file OUTPUT_FILE_PATH

	Specify where to output the log. if not pass,
the default value is
“/tmp/yardstick/yardstick.log”

	–suite TEST_SUITE_PATH

	run a test suite, TEST_SUITE_PATH specify where
the test suite locates

2.5.2. Run Yardstick in a local environment

We also have a guide about How to run Yardstick in a local environment [https://wiki.opnfv.org/display/yardstick/How+to+run+Yardstick+in+a+local+environment].
This work is contributed by Tapio Tallgren.

2.5.3. Create a new testcase for Yardstick

As a user, you may want to define a new testcase in addition to the ones
already available in Yardstick. This section will show you how to do this.

Each testcase consists of two sections:

	scenarios describes what will be done by the test

	context describes the environment in which the test will be run.

2.5.3.1. Defining the testcase scenarios

TODO

2.5.3.2. Defining the testcase context(s)

Each testcase consists of one or more contexts, which describe the environment
in which the testcase will be run.
Current available contexts are:

	Dummy: this is a no-op context, and is used when there is no environment
to set up e.g. when testing whether OpenStack services are available

	Node: this context is used to perform operations on baremetal servers

	Heat: uses OpenStack to provision the required hosts, networks, etc.

	Kubernetes: uses Kubernetes to provision the resources required for the
test.

Regardless of the context type, the context section of the testcase will
consist of the following:

context:
 name: demo
 type: Dummy|Node|Heat|Kubernetes

The content of the context section will vary based on the context type.

2.5.3.2.1. Dummy Context

No additional information is required for the Dummy context:

context:
 name: my_context
 type: Dummy

2.5.3.2.2. Node Context

TODO

2.5.3.2.3. Heat Context

In addition to name and type, a Heat context requires the following
arguments:

	image: the image to be used to boot VMs

	flavor: the flavor to be used for VMs in the context

	user: the username for connecting into the VMs

	networks: The networks to be created, networks are identified by name

	name: network name (required)

	(TODO) Any optional attributes

	servers: The servers to be created

	name: server name

	(TODO) Any optional attributes

In addition to the required arguments, the following optional arguments can be
passed to the Heat context:

	placement_groups:

	name: the name of the placement group to be created

	policy: either affinity or availability

	server_groups:

	name: the name of the server group

	policy: either affinity or anti-affinity

Combining these elements together, a sample Heat context config looks like:

Sample Heat context config with Dummy context

schema: "yardstick:task:0.1"

scenarios:
-
 type: Dummy

 runner:
 type: Duration
 duration: 5
 interval: 1

context:
 name: {{ context_name }}
 image: yardstick-image
 flavor: yardstick-flavor
 user: ubuntu

 servers:
 athena:
 name: athena
 ares:
 name: ares

 networks:
 test:
 name: test

2.5.3.2.3.1. Using exisiting HOT Templates

TODO

2.5.3.2.4. Kubernetes Context

TODO

2.5.3.2.5. Using multiple contexts in a testcase

When using multiple contexts in a testcase, the context section is replaced
by a contexts section, and each context is separated with a - line:

contexts:
-
 name: context1
 type: Heat
 ...
-
 name: context2
 type: Node
 ...

2.5.3.2.6. Reusing a context

Typically, a context is torn down after a testcase is run, however, the user
may wish to keep an context intact after a testcase is complete.

Note

This feature has been implemented for the Heat context only

To keep or reuse a context, the flags option must be specified:

	
	no_setup: skip the deploy stage, and fetch the details of a deployed
	context/Heat stack.

	
	no_teardown: skip the undeploy stage, thus keeping the stack intact for
	the next test

If either of these flags are True, the context information must still
be given. By default, these flags are disabled:

context:
 name: mycontext
 type: Heat
 flags:
 no_setup: True
 no_teardown: True
 ...

2.5.4. Create a test suite for Yardstick

A test suite in Yardstick is a .yaml file which includes one or more test
cases. Yardstick is able to support running test suite task, so you can
customize your own test suite and run it in one task.

tests/opnfv/test_suites is the folder where Yardstick puts CI test suite.
A typical test suite is like below (the fuel_test_suite.yaml example):

Fuel integration test task suite

schema: "yardstick:suite:0.1"

name: "fuel_test_suite"
test_cases_dir: "samples/"
test_cases:
-
 file_name: ping.yaml
-
 file_name: iperf3.yaml

As you can see, there are two test cases in the fuel_test_suite.yaml. The
schema and the name must be specified. The test cases should be listed
via the tag test_cases and their relative path is also marked via the tag
test_cases_dir.

Yardstick test suite also supports constraints and task args for each test
case. Here is another sample (the os-nosdn-nofeature-ha.yaml example) to
show this, which is digested from one big test suite:

schema: "yardstick:suite:0.1"

name: "os-nosdn-nofeature-ha"
test_cases_dir: "tests/opnfv/test_cases/"
test_cases:
-
 file_name: opnfv_yardstick_tc002.yaml
-
 file_name: opnfv_yardstick_tc005.yaml
-
 file_name: opnfv_yardstick_tc043.yaml
 constraint:
 installer: compass
 pod: huawei-pod1
 task_args:
 huawei-pod1: '{"pod_info": "etc/yardstick/.../pod.yaml",
 "host": "node4.LF","target": "node5.LF"}'

As you can see in test case opnfv_yardstick_tc043.yaml, there are two
tags, constraint and task_args. constraint is to specify which
installer or pod it can be run in the CI environment. task_args is to
specify the task arguments for each pod.

All in all, to create a test suite in Yardstick, you just need to create a
yaml file and add test cases, constraint or task arguments if necessary.

2.5.5. References

2.6. Installing a plug-in into Yardstick

2.6.1. Abstract

Yardstick provides a plugin CLI command to support integration with other
OPNFV testing projects. Below is an example invocation of Yardstick plugin
command and Storperf plug-in sample.

2.6.2. Installing Storperf into Yardstick

Storperf is delivered as a Docker container from
https://hub.docker.com/r/opnfv/storperf/tags/.

There are two possible methods for installation in your environment:

	Run container on Jump Host

	Run container in a VM

In this introduction we will install Storperf on Jump Host.

2.6.2.1. Step 0: Environment preparation

Running Storperf on Jump Host
Requirements:

	Docker must be installed

	Jump Host must have access to the OpenStack Controller API

	Jump Host must have internet connectivity for downloading docker image

	Enough floating IPs must be available to match your agent count

Before installing Storperf into yardstick you need to check your openstack
environment and other dependencies:

	Make sure docker is installed.

	Make sure Keystone, Nova, Neutron, Glance, Heat are installed correctly.

	Make sure Jump Host have access to the OpenStack Controller API.

	Make sure Jump Host must have internet connectivity for downloading docker
image.

	You need to know where to get basic openstack Keystone authorization info,
such as OS_PASSWORD, OS_PROJECT_NAME, OS_AUTH_URL, OS_USERNAME.

	To run a Storperf container, you need to have OpenStack Controller
environment variables defined and passed to Storperf container. The best way
to do this is to put environment variables in a “storperf_admin-rc” file.
The storperf_admin-rc should include credential environment variables at
least:

	OS_AUTH_URL

	OS_USERNAME

	OS_PASSWORD

	OS_PROJECT_NAME

	OS_PROJECT_ID

	OS_USER_DOMAIN_ID

Yardstick has a prepare_storperf_admin-rc.sh script which can be used to
generate the storperf_admin-rc file, this script is located at
test/ci/prepare_storperf_admin-rc.sh

#!/bin/bash
Prepare storperf_admin-rc for StorPerf.
AUTH_URL=${OS_AUTH_URL}
USERNAME=${OS_USERNAME:-admin}
PASSWORD=${OS_PASSWORD:-console}

OS_TENANT_NAME is still present to keep backward compatibility with legacy
deployments, but should be replaced by OS_PROJECT_NAME.
TENANT_NAME=${OS_TENANT_NAME:-admin}
PROJECT_NAME=${OS_PROJECT_NAME:-$TENANT_NAME}
PROJECT_ID=`openstack project show admin|grep '\bid\b' |awk -F '|' '{print $3}'|sed -e 's/^[[:space:]]*//'`
USER_DOMAIN_ID=${OS_USER_DOMAIN_ID:-default}

rm -f ~/storperf_admin-rc
touch ~/storperf_admin-rc

echo "OS_AUTH_URL="$AUTH_URL >> ~/storperf_admin-rc
echo "OS_USERNAME="$USERNAME >> ~/storperf_admin-rc
echo "OS_PASSWORD="$PASSWORD >> ~/storperf_admin-rc
echo "OS_PROJECT_NAME="$PROJECT_NAME >> ~/storperf_admin-rc
echo "OS_PROJECT_ID="$PROJECT_ID >> ~/storperf_admin-rc
echo "OS_USER_DOMAIN_ID="$USER_DOMAIN_ID >> ~/storperf_admin-rc

The generated storperf_admin-rc file will be stored in the root directory.
If you installed Yardstick using Docker, this file will be located in the
container. You may need to copy it to the root directory of the Storperf
deployed host.

2.6.2.2. Step 1: Plug-in configuration file preparation

To install a plug-in, first you need to prepare a plug-in configuration file in
YAML format and store it in the “plugin” directory. The plugin configration
file work as the input of yardstick “plugin” command. Below is the Storperf
plug-in configuration file sample:

StorPerf plugin configuration file
Used for integration StorPerf into Yardstick as a plugin
schema: "yardstick:plugin:0.1"
plugins:
 name: storperf
deployment:
 ip: 192.168.23.2
 user: root
 password: root

In the plug-in configuration file, you need to specify the plug-in name and the
plug-in deployment info, including node ip, node login username and password.
Here the Storperf will be installed on IP 192.168.23.2 which is the Jump Host
in my local environment.

2.6.2.3. Step 2: Plug-in install/remove scripts preparation

In yardstick/resource/scripts directory, there are two folders: an
install folder and a remove folder. You need to store the plug-in
install/remove scripts in these two folders respectively.

The detailed installation or remove operation should de defined in these two
scripts. The name of both install and remove scripts should match the plugin-in
name that you specified in the plug-in configuration file.

For example, the install and remove scripts for Storperf are both named
storperf.bash.

2.6.2.4. Step 3: Install and remove Storperf

To install Storperf, simply execute the following command:

Install Storperf
yardstick plugin install plugin/storperf.yaml

2.6.2.4.1. Removing Storperf from Yardstick

To remove Storperf, simply execute the following command:

Remove Storperf
yardstick plugin remove plugin/storperf.yaml

What yardstick plugin command does is using the username and password to log
into the deployment target and then execute the corresponding install or remove
script.

2.7. Store Other Project’s Test Results in InfluxDB

2.7.1. Abstract

This chapter illustrates how to run plug-in test cases and store test results
into community’s InfluxDB. The framework is shown in Framework [https://wiki.opnfv.org/download/attachments/6827660/wiki.png?version=1&modificationDate=1470298075000&api=v2].

[image: Store Other Project's Test Results in InfluxDB]

2.7.2. Store Storperf Test Results into Community’s InfluxDB

As shown in Framework [https://wiki.opnfv.org/download/attachments/6827660/wiki.png?version=1&modificationDate=1470298075000&api=v2], there are two ways to store Storperf test results
into community’s InfluxDB:

	Yardstick executes Storperf test case (TC074), posting test job to Storperf
container via ReST API. After the test job is completed, Yardstick reads
test results via ReST API from Storperf and posts test data to the influxDB.

	Additionally, Storperf can run tests by itself and post the test result
directly to the InfluxDB. The method for posting data directly to influxDB
will be supported in the future.

Our plan is to support rest-api in D release so that other testing projects can
call the rest-api to use yardstick dispatcher service to push data to
Yardstick’s InfluxDB database.

For now, InfluxDB only supports line protocol, and the json protocol is
deprecated.

Take ping test case for example, the raw_result is json format like this:

 "benchmark": {
 "timestamp": 1470315409.868095,
 "errors": "",
 "data": {
 "rtt": {
 "ares": 1.125
 }
 },
 "sequence": 1
 },
 "runner_id": 2625
}

With the help of “influxdb_line_protocol”, the json is transform to like below
as a line string:

'ping,deploy_scenario=unknown,host=athena.demo,installer=unknown,pod_name=unknown,
 runner_id=2625,scenarios=Ping,target=ares.demo,task_id=77755f38-1f6a-4667-a7f3-
 301c99963656,version=unknown rtt.ares=1.125 1470315409868094976'

So, for data output of json format, you just need to transform json into line
format and call influxdb api to post the data into the database. All this
function has been implemented in Influxdb [https://git.opnfv.org/cgit/yardstick/tree/yardstick/dispatcher/influxdb.py]. If you need support on this, please
contact Mingjiang.

curl -i -XPOST 'http://104.197.68.199:8086/write?db=yardstick' --
 data-binary 'ping,deploy_scenario=unknown,host=athena.demo,installer=unknown, ...'

Grafana will be used for visualizing the collected test data, which is shown in
Visual [https://wiki.opnfv.org/download/attachments/6827660/tc074.PNG?version=1&modificationDate=1470298075000&api=v2]. Grafana can be accessed by Login [http://testresults.opnfv.org/grafana/login].

[image: results visualization]

2.8. Grafana dashboard

2.8.1. Abstract

This chapter describes the Yardstick grafana dashboard. The Yardstick grafana
dashboard can be found here: http://testresults.opnfv.org/grafana/

[image: Yardstick grafana dashboard]

2.8.2. Public access

Yardstick provids a public account for accessing to the dashboard. The username
and password are both set to ‘opnfv’.

2.8.3. Testcase dashboard

For each test case, there is a dedicated dashboard. Shown here is the dashboard
of TC002.

[image: TC002 dashboard]
For each test case dashboard. On the top left, we have a dashboard selection,
you can switch to different test cases using this pull-down menu.

Underneath, we have a pod and scenario selection.
All the pods and scenarios that have ever published test data to the InfluxDB
will be shown here.

You can check multiple pods or scenarios.

For each test case, we have a short description and a link to detailed test
case information in Yardstick user guide.

Underneath, it is the result presentation section.
You can use the time period selection on the top right corner to zoom in or
zoom out the chart.

2.8.4. Administration access

For a user with administration rights it is easy to update and save any
dashboard configuration. Saved updates immediately take effect and become live.
This may cause issues like:

	Changes and updates made to the live configuration in Grafana can compromise
existing Grafana content in an unwanted, unpredicted or incompatible way.
Grafana as such is not version controlled, there exists one single Grafana
configuration per dashboard.

	There is a risk several people can disturb each other when doing updates to
the same Grafana dashboard at the same time.

Any change made by administrator should be careful.

2.8.5. Add a dashboard into Yardstick Grafana

Due to security concern, users that using the public opnfv account are not able
to edit the yardstick grafana directly. It takes a few more steps for a
non-yardstick user to add a custom dashboard into yardstick grafana.

There are 6 steps to go.

[image: Add a dashboard into yardstick grafana]

	You need to build a local influxdb and grafana, so you can do the work
locally. You can refer to How to deploy InfluxDB and Grafana locally wiki
page about how to do this.

	Once step one is done, you can fetch the existing grafana dashboard
configuration file from the yardstick repository and import it to your local
grafana. After import is done, you grafana dashboard will be ready to use
just like the community’s dashboard.

	The third step is running some test cases to generate test results and
publishing it to your local influxdb.

	Now you have some data to visualize in your dashboard. In the fourth step,
it is time to create your own dashboard. You can either modify an existing
dashboard or try to create a new one from scratch. If you choose to modify
an existing dashboard then in the curtain menu of the existing dashboard do
a “Save As…” into a new dashboard copy instance, and then continue doing
all updates and saves within the dashboard copy.

	When finished with all Grafana configuration changes in this temporary
dashboard then chose “export” of the updated dashboard copy into a JSON file
and put it up for review in Gerrit, in file
/yardstick/dashboard/Yardstick-TCxxx-yyyyyyyyyyyyy.
For instance a typical default name of the file would be
Yardstick-TC001 Copy-1234567891234.

	Once you finish your dashboard, the next step is exporting the configuration
file and propose a patch into Yardstick. Yardstick team will review and
merge it into Yardstick repository. After approved review Yardstick team
will do an “import” of the JSON file and also a “save dashboard” as soon as
possible to replace the old live dashboard configuration.

2.9. Yardstick Restful API

2.9.1. Abstract

Yardstick support restful API since Danube.

2.9.2. Available API

2.9.2.1. /yardstick/env/action

Description: This API is used to prepare Yardstick test environment.
For Euphrates, it supports:

	Prepare yardstick test environment, including setting the
EXTERNAL_NETWORK environment variable, load Yardstick VM images and
create flavors;

	Start an InfluxDB Docker container and config Yardstick output to InfluxDB;

	Start a Grafana Docker container and config it with the InfluxDB.

Which API to call will depend on the parameters.

Method: POST

Prepare Yardstick test environment
Example:

{
 'action': 'prepare_env'
}

This is an asynchronous API. You need to call /yardstick/asynctask API to
get the task result.

Start and config an InfluxDB docker container
Example:

{
 'action': 'create_influxdb'
}

This is an asynchronous API. You need to call /yardstick/asynctask API to
get the task result.

Start and config a Grafana docker container
Example:

{
 'action': 'create_grafana'
}

This is an asynchronous API. You need to call /yardstick/asynctask API to
get the task result.

2.9.2.2. /yardstick/asynctask

Description: This API is used to get the status of asynchronous tasks

Method: GET

Get the status of asynchronous tasks
Example:

http://<SERVER IP>:<PORT>/yardstick/asynctask?task_id=3f3f5e03-972a-4847-a5f8-154f1b31db8c

The returned status will be 0(running), 1(finished) and 2(failed).

NOTE:

<SERVER IP>: The ip of the host where you start your yardstick container
<PORT>: The outside port of port mapping which set when you start start yardstick container

2.9.2.3. /yardstick/testcases

Description: This API is used to list all released Yardstick test cases.

Method: GET

Get a list of released test cases
Example:

http://<SERVER IP>:<PORT>/yardstick/testcases

2.9.2.4. /yardstick/testcases/release/action

Description: This API is used to run a Yardstick released test case.

Method: POST

Run a released test case
Example:

{
 'action': 'run_test_case',
 'args': {
 'opts': {},
 'testcase': 'opnfv_yardstick_tc002'
 }
}

This is an asynchronous API. You need to call /yardstick/results to get the
result.

2.9.2.5. /yardstick/testcases/samples/action

Description: This API is used to run a Yardstick sample test case.

Method: POST

Run a sample test case
Example:

{
 'action': 'run_test_case',
 'args': {
 'opts': {},
 'testcase': 'ping'
 }
}

This is an asynchronous API. You need to call /yardstick/results to get
the result.

2.9.2.6. /yardstick/testcases/<testcase_name>/docs

Description: This API is used to the documentation of a certain released test
case.

Method: GET

Get the documentation of a certain test case
Example:

http://<SERVER IP>:<PORT>/yardstick/taskcases/opnfv_yardstick_tc002/docs

2.9.2.7. /yardstick/testsuites/action

Description: This API is used to run a Yardstick test suite.

Method: POST

Run a test suite
Example:

{
 'action': 'run_test_suite',
 'args': {
 'opts': {},
 'testsuite': 'opnfv_smoke'
 }
}

This is an asynchronous API. You need to call /yardstick/results to get the
result.

2.9.2.8. /yardstick/tasks/<task_id>/log

Description: This API is used to get the real time log of test case execution.

Method: GET

Get real time of test case execution
Example:

http://<SERVER IP>:<PORT>/yardstick/tasks/14795be8-f144-4f54-81ce-43f4e3eab33f/log?index=0

2.9.2.9. /yardstick/results

Description: This API is used to get the test results of tasks. If you call
/yardstick/testcases/samples/action API, it will return a task id. You can use
the returned task id to get the results by using this API.

Method: GET

Get test results of one task
Example:

http://<SERVER IP>:<PORT>/yardstick/results?task_id=3f3f5e03-972a-4847-a5f8-154f1b31db8c

This API will return a list of test case result

2.9.2.10. /api/v2/yardstick/openrcs

Description: This API provides functionality of handling OpenStack credential
file (openrc). For Euphrates, it supports:

	Upload an openrc file for an OpenStack environment;

	Update an openrc;

	Get openrc file information;

	Delete an openrc file.

Which API to call will depend on the parameters.

METHOD: POST

Upload an openrc file for an OpenStack environment
Example:

{
 'action': 'upload_openrc',
 'args': {
 'file': file,
 'environment_id': environment_id
 }
}

METHOD: POST

Update an openrc file
Example:

{
 'action': 'update_openrc',
 'args': {
 'openrc': {
 "EXTERNAL_NETWORK": "ext-net",
 "OS_AUTH_URL": "http://192.168.23.51:5000/v3",
 "OS_IDENTITY_API_VERSION": "3",
 "OS_IMAGE_API_VERSION": "2",
 "OS_PASSWORD": "console",
 "OS_PROJECT_DOMAIN_NAME": "default",
 "OS_PROJECT_NAME": "admin",
 "OS_USERNAME": "admin",
 "OS_USER_DOMAIN_NAME": "default"
 },
 'environment_id': environment_id
 }
}

2.9.2.11. /api/v2/yardstick/openrcs/<openrc_id>

Description: This API provides functionality of handling OpenStack credential file (openrc). For Euphrates, it supports:

	Get openrc file information;

	Delete an openrc file.

METHOD: GET

Get openrc file information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/openrcs/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete openrc file
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/openrcs/5g6g3e02-155a-4847-a5f8-154f1b31db8c

2.9.2.12. /api/v2/yardstick/pods

Description: This API provides functionality of handling Yardstick pod file
(pod.yaml). For Euphrates, it supports:

	Upload a pod file;

Which API to call will depend on the parameters.

METHOD: POST

Upload a pod.yaml file
Example:

{
 'action': 'upload_pod_file',
 'args': {
 'file': file,
 'environment_id': environment_id
 }
}

2.9.2.13. /api/v2/yardstick/pods/<pod_id>

Description: This API provides functionality of handling Yardstick pod file (pod.yaml). For Euphrates, it supports:

	Get pod file information;

	Delete an openrc file.

METHOD: GET

Get pod file information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/pods/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete openrc file
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/pods/5g6g3e02-155a-4847-a5f8-154f1b31db8c

2.9.2.14. /api/v2/yardstick/images

Description: This API is used to do some work related to Yardstick VM images.
For Euphrates, it supports:

	Load Yardstick VM images;

Which API to call will depend on the parameters.

METHOD: POST

Load VM images
Example:

{
 'action': 'load_image',
 'args': {
 'name': 'yardstick-image'
 }
}

2.9.2.15. /api/v2/yardstick/images/<image_id>

Description: This API is used to do some work related to Yardstick VM images. For Euphrates, it supports:

	Get image’s information;

	Delete images

METHOD: GET

Get image information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/images/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete images
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/images/5g6g3e02-155a-4847-a5f8-154f1b31db8c

2.9.2.16. /api/v2/yardstick/tasks

Description: This API is used to do some work related to yardstick tasks. For
Euphrates, it supports:

	Create a Yardstick task;

Which API to call will depend on the parameters.

METHOD: POST

Create a Yardstick task
Example:

{
 'action': 'create_task',
 'args': {
 'name': 'task1',
 'project_id': project_id
 }
}

2.9.2.17. /api/v2/yardstick/tasks/<task_id>

Description: This API is used to do some work related to yardstick tasks. For Euphrates, it supports:

	Add a environment to a task

	Add a test case to a task;

	Add a test suite to a task;

	run a Yardstick task;

	Get a tasks’ information;

	Delete a task.

METHOD: PUT

Add a environment to a task

Example:

{
 'action': 'add_environment',
 'args': {
 'environment_id': 'e3cadbbb-0419-4fed-96f1-a232daa0422a'
 }
}

METHOD: PUT

Add a test case to a task
Example:

{
 'action': 'add_case',
 'args': {
 'case_name': 'opnfv_yardstick_tc002',
 'case_content': case_content
 }
}

METHOD: PUT

Add a test suite to a task
Example:

{
 'action': 'add_suite',
 'args': {
 'suite_name': 'opnfv_smoke',
 'suite_content': suite_content
 }
}

METHOD: PUT

Run a task

Example:

{
 'action': 'run'
}

METHOD: GET

Get a task’s information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/tasks/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete a task

Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/tasks/5g6g3e02-155a-4847-a5f8-154f1b31db8c

2.9.2.18. /api/v2/yardstick/testcases

Description: This API is used to do some work related to Yardstick testcases.
For Euphrates, it supports:

	Upload a test case;

	Get all released test cases’ information;

Which API to call will depend on the parameters.

METHOD: POST

Upload a test case
Example:

{
 'action': 'upload_case',
 'args': {
 'file': file
 }
}

METHOD: GET

Get all released test cases’ information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases

2.9.2.19. /api/v2/yardstick/testcases/<case_name>

Description: This API is used to do some work related to yardstick testcases. For Euphrates, it supports:

	Get certain released test case’s information;

	Delete a test case.

METHOD: GET

Get certain released test case’s information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases/opnfv_yardstick_tc002

METHOD: DELETE

Delete a certain test case
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases/opnfv_yardstick_tc002

2.9.2.20. /api/v2/yardstick/testsuites

Description: This API is used to do some work related to yardstick test suites.
For Euphrates, it supports:

	Create a test suite;

	Get all test suites;

Which API to call will depend on the parameters.

METHOD: POST

Create a test suite
Example:

{
 'action': 'create_suite',
 'args': {
 'name': <suite_name>,
 'testcases': [
 'opnfv_yardstick_tc002'
]
 }
}

METHOD: GET

Get all test suite
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites

2.9.2.21. /api/v2/yardstick/testsuites

Description: This API is used to do some work related to yardstick test suites. For Euphrates, it supports:

	Get certain test suite’s information;

	Delete a test case.

METHOD: GET

Get certain test suite’s information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites/<suite_name>

METHOD: DELETE

Delete a certain test suite
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites/<suite_name>

2.9.2.22. /api/v2/yardstick/projects

Description: This API is used to do some work related to Yardstick test
projects. For Euphrates, it supports:

	Create a Yardstick project;

	Get all projects;

Which API to call will depend on the parameters.

METHOD: POST

Create a Yardstick project
Example:

{
 'action': 'create_project',
 'args': {
 'name': 'project1'
 }
}

METHOD: GET

Get all projects’ information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects

2.9.2.23. /api/v2/yardstick/projects

Description: This API is used to do some work related to yardstick test projects. For Euphrates, it supports:

	Get certain project’s information;

	Delete a project.

METHOD: GET

Get certain project’s information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects/<project_id>

METHOD: DELETE

Delete a certain project
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects/<project_id>

2.9.2.24. /api/v2/yardstick/containers

Description: This API is used to do some work related to Docker containers.
For Euphrates, it supports:

	Create a Grafana Docker container;

	Create an InfluxDB Docker container;

Which API to call will depend on the parameters.

METHOD: POST

Create a Grafana Docker container
Example:

{
 'action': 'create_grafana',
 'args': {
 'environment_id': <environment_id>
 }
}

METHOD: POST

Create an InfluxDB Docker container
Example:

{
 'action': 'create_influxdb',
 'args': {
 'environment_id': <environment_id>
 }
}

2.9.2.25. /api/v2/yardstick/containers/<container_id>

Description: This API is used to do some work related to Docker containers. For Euphrates, it supports:

	Get certain container’s information;

	Delete a container.

METHOD: GET

Get certain container’s information
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/containers/<container_id>

METHOD: DELETE

Delete a certain container
Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/containers/<container_id>

2.10. Yardstick User Interface

This chapter describes how to generate HTML reports, used to view, store, share
or publish test results in table and graph formats.

The following layouts are available:

	The compact HTML report layout is suitable for testcases producing a few
metrics over a short period of time. All metrics for all timestamps are
displayed in the data table and on the graph.

	The dynamic HTML report layout consists of a wider data table, a graph, and
a tree that allows selecting the metrics to be displayed. This layout is
suitable for testcases, such as NSB ones, producing a lot of metrics over
a longer period of time.

2.10.1. Commands

To generate the compact HTML report, run:

yardstick report generate <task-ID> <testcase-filename>

To generate the dynamic HTML report, run:

yardstick report generate-nsb <task-ID> <testcase-filename>

2.10.2. Description

	When the command is triggered, the relevant values for the
provided task-id and testcase name are retrieved from the
database (InfluxDB [https://www.influxdata.com/time-series-platform/influxdb/] in this particular case).

	The values are then formatted and provided to the html
template to be rendered using Jinja2 [http://jinja.pocoo.org/docs/2.10/].

	Then the rendered template is written into a html file.

The graph is framed with Timestamp on x-axis and output values
(differ from testcase to testcase) on y-axis with the help of
Chart.js [https://www.chartjs.org/].

2.11. Network Services Benchmarking (NSB)

2.11.1. Abstract

This chapter provides an overview of the NSB, a contribution to OPNFV
Yardstick [https://wiki.opnfv.org/display/yardstick] from Intel.

2.11.2. Overview

Network Services Benchmarking (NSB) uses the Yardstick
framework for performing VNF and NFVI characterisation in an
NFV environment.

For VNF characterisation, NSB will onboard a VNF, source and sink traffic to it
via traffic generators, and collect a variety of key performance indicators
(KPI) during VNF execution. The stream of KPI data is stored in a
database, and it is visualized in a performance-visualization dashboard.

For NFVI characterisation, a fixed test VNF, called PROX is used.
PROX implements a suite of test cases and visualizes the output data of the
test suite. The PROX test cases implement various execution kernels found in
real-world VNFs, and the output of the test cases provides an indication of
the fitness of the infrastructure for running NFV services, in addition to
indicating potential performance optimizations for the NFVI.

NSB extends the Yardstick framework to do VNF characterization in three
different execution environments - bare metal i.e. native Linux environment,
standalone virtual environment and managed virtualized environment (e.g.
OpenStack). It also brings in the capability to interact with external traffic
generators, both hardware and software based, for triggering and validating the
traffic according to user defined profiles.

NSB extension includes:

	Generic data models of Network Services, based on ETSI spec
ETSI GS NFV-TST001 [http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_nfv-tst001v010101p.pdf]

	Standalone context for VNF testing SRIOV, OVS-DPDK, etc

	Generic VNF configuration models and metrics implemented with Python
classes

	Traffic generator features and traffic profiles

	L1-L3 stateless traffic profiles

	L4-L7 state-full traffic profiles

	Tunneling protocol/network overlay support

	Scenarios that handle NSB test cases execution

	NSPerf - scenario that handles generic NSB test case execution
(setup and init tg/vnf, trigger traffic on tg, collect kpi)

	NSPerf-RFC2544 - scenario that allows repeatable triggering of traffic on
traffic generators until test case acceptance criteria is met
(for example RFC2544 binary search)

	Test case samples

	Ping

	Trex

	vPE, vCGNAT, vFirewall etc - ipv4 throughput, latency etc

	Traffic generators i.e. Trex, ab/nginx, ixia, iperf, etc

	KPIs for a given use case:

	System agent support for collecting NFVi KPI. This includes:

	CPU statistic

	Memory BW

	OVS-DPDK Stats

	Network KPIs e.g. inpackets, outpackets, thoughput, latency

	VNF KPIs e.g. packet_in, packet_drop, packet_fwd

2.11.3. Architecture

The Network Service (NS) defines a set of Virtual Network Functions (VNF)
connected together using NFV infrastructure.

The Yardstick NSB extension can support multiple VNFs created by different
vendors including traffic generators. Every VNF being tested has its
own data model. The Network service defines a VNF modelling on base of
performed network functionality. The part of the data model is a set of the
configuration parameters, number of connection points used and flavor including
core and memory amount.

ETSI defines a Network Service as a set of configurable VNFs working in some
NFV Infrastructure connecting each other using Virtual Links available through
Connection Points. The ETSI MANO specification defines a set of management
entities called Network Service Descriptors (NSD) and VNF Descriptors (VNFD)
that define real Network Service. The picture below makes an example how the
real Network Operator use-case can map into ETSI Network service definition.

Network Service framework performs the necessary test steps. It may involve:

	Interacting with traffic generator and providing the inputs on traffic
type / packet structure to generate the required traffic as per the
test case. Traffic profiles will be used for this.

	Executing the commands required for the test procedure and analyses the
command output for confirming whether the command got executed correctly
or not e.g. as per the test case, run the traffic for the given
time period and wait for the necessary time delay.

	Verify the test result.

	Validate the traffic flow from SUT.

	Fetch the data from SUT and verify the value as per the test case.

	Upload the logs from SUT onto the Test Harness server

	Retrieve the KPI’s provided by particular VNF

2.11.3.1. Components of Network Service

	Models for Network Service benchmarking: The Network Service benchmarking
requires the proper modelling approach. The NSB provides models using Python
files and defining of NSDs and VNFDs.

The benchmark control application being a part of OPNFV Yardstick can call
that Python models to instantiate and configure the VNFs. Depending on
infrastructure type (bare-metal or fully virtualized) that calls could be
made directly or using MANO system.

	Traffic generators in NSB: Any benchmark application requires a set of
traffic generator and traffic profiles defining the method in which traffic
is generated.

The Network Service benchmarking model extends the Network Service
definition with a set of Traffic Generators (TG) that are treated
same way as other VNFs being a part of benchmarked network service.
Same as other VNFs the traffic generator are instantiated and terminated.

Every traffic generator has own configuration defined as a traffic profile
and a set of KPIs supported. The python models for TG is extended by
specific calls to listen and generate traffic.

	The stateless TREX traffic generator: The main traffic generator used as
Network Service stimulus is open source TREX tool.

The TREX tool can generate any kind of stateless traffic.

+--------+ +-------+ +--------+
Trex	--->	VNF	--->	Trex
+--------+ +-------+ +--------+

Supported testcases scenarios:

	Correlated UDP traffic using TREX traffic generator and replay VNF.

	Using different IMIX configuration like pure voice, pure video traffic etc

	Using different number IP flows e.g. 1, 1K, 16K, 64K, 256K, 1M flows

	Using different number of rules configured e.g. 1, 1K, 10K rules

For UDP correlated traffic following Key Performance Indicators are collected
for every combination of test case parameters:

	RFC2544 throughput for various loss rate defined (1% is a default)

2.11.3.2. KPI Collection

KPI collection is the process of sampling KPIs at multiple intervals to allow
for investigation into anomalies during runtime. Some KPI intervals are
adjustable. KPIs are collected from traffic generators and NFVI for the SUT.
There is already some reporting in NSB available, but NSB collects all KPIs for
analytics to process.

Below is an example list of basic KPIs:

	Throughput

	Latency

	Packet delay variation

	Maximum establishment rate

	Maximum tear-down rate

	Maximum simultaneous number of sessions

Of course, there can be many other KPIs that will be relevant for a specific
NFVI, but in most cases these KPIs are enough to give you a basic picture of
the SUT. NSB also uses collectd in order to collect the KPIs. Currently
the following collectd plug-ins are enabled for NSB testcases:

	Libvirt

	Interface stats

	OvS events

	vSwitch stats

	Huge Pages

	RAM

	CPU usage

	Intel® PMU

	Intel® RDT

2.11.4. Graphical Overview

NSB Testing with Yardstick framework facilitate performance testing of various
VNFs provided.

+-----------+
| | +-------------+
| vPE | -->| TGen Port 0 |
| TestCase | | +-------------+
| | |
+-----------+ +---------------+ +-------+ |
 | | ---> | VNF | <--->
+-----------+ | Yardstick | +-------+ |
| Test Case | --> | NSB Testing | |
+-----------+ | | |
 | | | |
 | +---------------+ |
+-----------+ | +-------------+
| Traffic | -->| TGen Port 1 |
| patterns | +-------------+
+-----------+

 Figure 1: Network Service - 2 server configuration

2.11.4.1. VNFs supported for chracterization

	CGNAPT - Carrier Grade Network Address and port Translation

	vFW - Virtual Firewall

	vACL - Access Control List

	
	PROX - Packet pROcessing eXecution engine:
	
	VNF can act as Drop, Basic Forwarding (no touch),
L2 Forwarding (change MAC), GRE encap/decap, Load balance based on
packet fields, Symmetric load balancing

	QinQ encap/decap IPv4/IPv6, ARP, QoS, Routing, Unmpls, Policing, ACL

	UDP_Replay

2.12. NSB Installation

2.12.1. Abstract

The steps needed to run Yardstick with NSB testing are:

	Install Yardstick (NSB Testing).

	Setup/reference pod.yaml describing Test topology.

	Create/reference the test configuration yaml file.

	Run the test case.

2.12.2. Prerequisites

Refer to Yardstick Installation for more information on Yardstick
prerequisites.

Several prerequisites are needed for Yardstick (VNF testing):

	Python Modules: pyzmq, pika.

	flex

	bison

	build-essential

	automake

	libtool

	librabbitmq-dev

	rabbitmq-server

	collectd

	intel-cmt-cat

2.12.2.1. Hardware & Software Ingredients

SUT requirements:

	Item

	Description

	Memory

	Min 20GB

	NICs

	2 x 10G

	OS

	Ubuntu 16.04.3 LTS

	kernel

	4.4.0-34-generic

	DPDK

	17.02

Boot and BIOS settings:

	Boot settings

	default_hugepagesz=1G hugepagesz=1G hugepages=16
hugepagesz=2M hugepages=2048 isolcpus=1-11,22-33
nohz_full=1-11,22-33 rcu_nocbs=1-11,22-33
iommu=on iommu=pt intel_iommu=on
Note: nohz_full and rcu_nocbs is to disable Linux
kernel interrupts

	BIOS

	CPU Power and Performance Policy <Performance>
CPU C-state Disabled
CPU P-state Disabled
Enhanced Intel® Speedstep® Tech Disabl
Hyper-Threading Technology (If supported) Enabled
Virtualization Techology Enabled
Intel(R) VT for Direct I/O Enabled
Coherency Enabled
Turbo Boost Disabled

2.12.3. Install Yardstick (NSB Testing)

Yardstick with NSB can be installed using nsb_setup.sh.
The nsb_setup.sh allows to:

	Install Yardstick in specified mode: bare metal or container.
Refer Yardstick Installation.

	Install package dependencies on remote servers used as traffic generator or
sample VNF. Install DPDK, sample VNFs, TREX, collectd.
Add such servers to install-inventory.ini file to either
yardstick-standalone or yardstick-baremetal server groups.
It configures IOMMU, hugepages, open file limits, CPU isolation, etc.

	Build VM image either nsb or normal. The nsb VM image is used to run
Yardstick sample VNF tests, like vFW, vACL, vCGNAPT, etc.
The normal VM image is used to run Yardstick ping tests in OpenStack context.

	Add nsb or normal VM image to OpenStack together with OpenStack variables.

Firstly, configure the network proxy, either using the environment variables or
setting the global environment file.

Set environment in the file:

http_proxy='http://proxy.company.com:port'
https_proxy='http://proxy.company.com:port'

Set environment variables:

export http_proxy='http://proxy.company.com:port'
export https_proxy='http://proxy.company.com:port'

Download the source code and check out the latest stable branch:

git clone https://gerrit.opnfv.org/gerrit/yardstick
cd yardstick
Switch to latest stable branch
git checkout stable/gambia

Modify the Yardstick installation inventory used by Ansible:

cat ./ansible/install-inventory.ini
[jumphost]
localhost ansible_connection=local

section below is only due backward compatibility.
it will be removed later
[yardstick:children]
jumphost

[yardstick-baremetal]
baremetal ansible_host=192.168.2.51 ansible_connection=ssh

[yardstick-standalone]
standalone ansible_host=192.168.2.52 ansible_connection=ssh

[all:vars]
Uncomment credentials below if needed
 ansible_user=root
 ansible_ssh_pass=root
ansible_ssh_private_key_file=/root/.ssh/id_rsa
When IMG_PROPERTY is passed neither normal nor nsb set
"path_to_vm=/path/to/image" to add it to OpenStack
path_to_img=/tmp/workspace/yardstick-image.img

List of CPUs to be isolated (not used by default)
Grub line will be extended with:
"isolcpus=<ISOL_CPUS> nohz=on nohz_full=<ISOL_CPUS> rcu_nocbs=1<ISOL_CPUS>"
ISOL_CPUS=2-27,30-55 # physical cpu's for all NUMA nodes, four cpu's reserved

Warning

Before running nsb_setup.sh make sure python is installed on servers
added to yardstick-standalone and yardstick-baremetal groups.

Note

SSH access without password needs to be configured for all your nodes
defined in install-inventory.ini file.
If you want to use password authentication you need to install sshpass:

sudo -EH apt-get install sshpass

Note

A VM image built by other means than Yardstick can be added to OpenStack.
Uncomment and set correct path to the VM image in the
install-inventory.ini file:

path_to_img=/tmp/workspace/yardstick-image.img

Note

CPU isolation can be applied to the remote servers, like:
ISOL_CPUS=2-27,30-55. Uncomment and modify accordingly in
install-inventory.ini file.

By default nsb_setup.sh pulls Yardstick image based on Ubuntu 16.04 from
docker hub and starts container, builds NSB VM image based on Ubuntu 16.04,
installs packages to the servers given in yardstick-standalone and
yardstick-baremetal host groups.

To pull Yardstick built based on Ubuntu 18 run:

./nsb_setup.sh -i opnfv/yardstick-ubuntu-18.04:latest

To change default behavior modify parameters for install.yaml in
nsb_setup.sh file.

Refer chapter Yardstick Installation for more details on install.yaml
parameters.

To execute an installation for a BareMetal or a Standalone context:

./nsb_setup.sh

To execute an installation for an OpenStack context:

./nsb_setup.sh <path to admin-openrc.sh>

Note

Yardstick may not be operational after distributive linux kernel update if
it has been installed before. Run nsb_setup.sh again to resolve this.

Warning

The Yardstick VM image (NSB or normal) cannot be built inside a VM.

Warning

The nsb_setup.sh configures huge pages, CPU isolation, IOMMU on the grub.
Reboot of the servers from yardstick-standalone or
yardstick-baremetal groups in the file install-inventory.ini is
required to apply those changes.

The above commands will set up Docker with the latest Yardstick code. To
execute:

docker exec -it yardstick bash

Note

It may be needed to configure tty in docker container to extend commandline
character length, for example:

stty size rows 58 cols 234

It will also automatically download all the packages needed for NSB Testing
setup. Refer chapter Yardstick Installation for more on Docker:
Install Yardstick using Docker (first option) (recommended)

2.12.3.1. Bare Metal context example

Let’s assume there are three servers acting as TG, sample VNF DUT and jump host.

Perform following steps to install NSB:

	Clone Yardstick repo to jump host.

	Add TG and DUT servers to yardstick-baremetal group in
install-inventory.ini file to install NSB and dependencies. Install
python on servers.

	Start deployment using docker image based on Ubuntu 16:

./nsb_setup.sh

	Reboot bare metal servers.

	Enter to yardstick container and modify pod yaml file and run tests.

2.12.3.2. Standalone context example for Ubuntu 18

Let’s assume there are three servers acting as TG, sample VNF DUT and jump host.
Ubuntu 18 is installed on all servers.

Perform following steps to install NSB:

	Clone Yardstick repo to jump host.

	Add TG server to yardstick-baremetal group in
install-inventory.ini file to install NSB and dependencies.
Add server where VM with sample VNF will be deployed to
yardstick-standalone group in install-inventory.ini file.
Target VM image named yardstick-nsb-image.img will be placed to
/var/lib/libvirt/images/.
Install python on servers.

	Modify nsb_setup.sh on jump host:

ansible-playbook \
-e IMAGE_PROPERTY='nsb' \
-e OS_RELEASE='bionic' \
-e INSTALLATION_MODE='container_pull' \
-e YARD_IMAGE_ARCH='amd64' ${extra_args} \
-i install-inventory.ini install.yaml

	Start deployment with Yardstick docker images based on Ubuntu 18:

./nsb_setup.sh -i opnfv/yardstick-ubuntu-18.04:latest -o <openrc_file>

	Reboot servers.

	Enter to yardstick container and modify pod yaml file and run tests.

2.12.4. System Topology

+----------+ +----------+
	(0)----->(0)	
TG1		DUT
	(1)<-----(1)	
+----------+ +----------+
trafficgen_0 vnf

2.12.5. Environment parameters and credentials

2.12.5.1. Configure yardstick.conf

If you did not run yardstick env influxdb inside the container to generate
yardstick.conf, then create the config file manually (run inside the
container):

cp ./etc/yardstick/yardstick.conf.sample /etc/yardstick/yardstick.conf
vi /etc/yardstick/yardstick.conf

Add trex_path, trex_client_lib and bin_path to the nsb
section:

[DEFAULT]
debug = True
dispatcher = influxdb

[dispatcher_influxdb]
timeout = 5
target = http://{YOUR_IP_HERE}:8086
db_name = yardstick
username = root
password = root

[nsb]
trex_path=/opt/nsb_bin/trex/scripts
bin_path=/opt/nsb_bin
trex_client_lib=/opt/nsb_bin/trex_client/stl

2.12.6. Run Yardstick - Network Service Testcases

2.12.6.1. NS testing - using yardstick CLI

See Yardstick Installation

Connect to the Yardstick container:

docker exec -it yardstick /bin/bash

If you’re running heat testcases and nsb_setup.sh was not used:

source /etc/yardstick/openstack.creds

In addition to the above, you need to set the EXTERNAL_NETWORK for
OpenStack:

export EXTERNAL_NETWORK="<openstack public network>"

Finally, you should be able to run the testcase:

yardstick --debug task start yardstick/samples/vnf_samples/nsut/<vnf>/<test case>

2.12.7. Network Service Benchmarking - Bare-Metal

2.12.7.1. Bare-Metal Config pod.yaml describing Topology

2.12.7.1.1. Bare-Metal 2-Node setup

+----------+ +----------+
	(0)----->(0)	
TG1		DUT
	(n)<-----(n)	
+----------+ +----------+
trafficgen_0 vnf

2.12.7.1.2. Bare-Metal 3-Node setup - Correlated Traffic

+----------+ +----------+ +------------+
	(0)----->(0)			UDP
TG1		DUT		Replay
			(1)<---->(0)	
+----------+ +----------+ +------------+
trafficgen_0 vnf trafficgen_1

2.12.7.2. Bare-Metal Config pod.yaml

Before executing Yardstick test cases, make sure that pod.yaml reflects the
topology and update all the required fields.:

cp <yardstick>/etc/yardstick/nodes/pod.yaml.nsb.sample /etc/yardstick/nodes/pod.yaml

nodes:
-
 name: trafficgen_0
 role: TrafficGen
 ip: 1.1.1.1
 user: root
 password: r00t
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.0"
 driver: i40e # default kernel driver
 dpdk_port_num: 0
 local_ip: "152.16.100.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:01"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.1"
 driver: i40e # default kernel driver
 dpdk_port_num: 1
 local_ip: "152.16.40.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:02"

-
 name: vnf
 role: vnf
 ip: 1.1.1.2
 user: root
 password: r00t
 host: 1.1.1.2 #BM - host == ip, virtualized env - Host - compute node
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.0"
 driver: i40e # default kernel driver
 dpdk_port_num: 0
 local_ip: "152.16.100.19"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:03"

 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.1"
 driver: i40e # default kernel driver
 dpdk_port_num: 1
 local_ip: "152.16.40.19"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:04"
 routing_table:
 - network: "152.16.100.20"
 netmask: "255.255.255.0"
 gateway: "152.16.100.20"
 if: "xe0"
 - network: "152.16.40.20"
 netmask: "255.255.255.0"
 gateway: "152.16.40.20"
 if: "xe1"
 nd_route_tbl:
 - network: "0064:ff9b:0:0:0:0:9810:6414"
 netmask: "112"
 gateway: "0064:ff9b:0:0:0:0:9810:6414"
 if: "xe0"
 - network: "0064:ff9b:0:0:0:0:9810:2814"
 netmask: "112"
 gateway: "0064:ff9b:0:0:0:0:9810:2814"
 if: "xe1"

2.12.8. Standalone Virtualization

VM can be deployed manually or by Yardstick. If parameter vm_deploy is set
to True VM will be deployed by Yardstick. Otherwise VM should be deployed
manually. Test case example, context section:

contexts:
 ...
 vm_deploy: True

2.12.8.1. SR-IOV

2.12.8.1.1. SR-IOV Pre-requisites

	On Host, where VM is created:
	
	Create and configure a bridge named br-int for VM to connect to
external network. Currently this can be done using VXLAN tunnel.

Execute the following on host, where VM is created:

ip link add type vxlan remote <Jumphost IP> local <DUT IP> id <ID: 10> dstport 4789
brctl addbr br-int
brctl addif br-int vxlan0
ip link set dev vxlan0 up
ip addr add <IP#1, like: 172.20.2.1/24> dev br-int
ip link set dev br-int up

Note

You may need to add extra rules to iptable to forward traffic.

iptables -A FORWARD -i br-int -s <network ip address>/<netmask> -j ACCEPT
iptables -A FORWARD -o br-int -d <network ip address>/<netmask> -j ACCEPT

Execute the following on a jump host:

ip link add type vxlan remote <DUT IP> local <Jumphost IP> id <ID: 10> dstport 4789
ip addr add <IP#2, like: 172.20.2.2/24> dev vxlan0
ip link set dev vxlan0 up

Note

Host and jump host are different baremetal servers.

	Modify test case management CIDR.
IP addresses IP#1, IP#2 and CIDR must be in the same network.

servers:
 vnf_0:
 network_ports:
 mgmt:
 cidr: '1.1.1.7/24'

	Build guest image for VNF to run.
Most of the sample test cases in Yardstick are using a guest image called
yardstick-nsb-image which deviates from an Ubuntu Cloud Server image
Yardstick has a tool for building this custom image with SampleVNF.
It is necessary to have sudo rights to use this tool.

Also you may need to install several additional packages to use this tool, by
following the commands below:

sudo apt-get update && sudo apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where
Yardstick is installed:

export YARD_IMG_ARCH='amd64'
sudo echo "Defaults env_keep += \'YARD_IMG_ARCH\'" >> /etc/sudoers

For instructions on generating a cloud image using Ansible, refer to
Yardstick Installation.

Note

VM should be build with static IP and be accessible from the
Yardstick host.

2.12.8.1.2. SR-IOV Config pod.yaml describing Topology

2.12.8.1.3. SR-IOV 2-Node setup

 +--------------------+
 | |
 | |
 | DUT |
 | (VNF) |
 | |
 +--------------------+
 | VF NIC | | VF NIC |
 +--------+ +--------+
 ^ ^
 | |
 | |
+----------+ +-------------------------+
		^ ^		
	(0)<----->(0)	------ SUT		
TG1				
	(n)<----->(n)	-----------------		
+----------+ +-------------------------+
trafficgen_0 host

2.12.8.1.4. SR-IOV 3-Node setup - Correlated Traffic

 +--------------------+
 | |
 | |
 | DUT |
 | (VNF) |
 | |
 +--------------------+
 | VF NIC | | VF NIC |
 +--------+ +--------+
 ^ ^
 | |
 | |
+----------+ +---------------------+ +--------------+
		^ ^				
	(0)<----->(0)	-----			TG2	
TG1		SUT			(UDP Replay)	
	(n)<----->(n)	-----	(n)<-->(n)			
+----------+ +---------------------+ +--------------+
trafficgen_0 host trafficgen_1

Before executing Yardstick test cases, make sure that pod.yaml reflects the
topology and update all the required fields.

cp <yardstick>/etc/yardstick/nodes/standalone/trex_bm.yaml.sample /etc/yardstick/nodes/standalone/pod_trex.yaml
cp <yardstick>/etc/yardstick/nodes/standalone/host_sriov.yaml /etc/yardstick/nodes/standalone/host_sriov.yaml

Note

Update all the required fields like ip, user, password, pcis, etc…

2.12.8.1.5. SR-IOV Config pod_trex.yaml

nodes:
-
 name: trafficgen_0
 role: TrafficGen
 ip: 1.1.1.1
 user: root
 password: r00t
 key_filename: /root/.ssh/id_rsa
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.0"
 driver: i40e # default kernel driver
 dpdk_port_num: 0
 local_ip: "152.16.100.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:01"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.1"
 driver: i40e # default kernel driver
 dpdk_port_num: 1
 local_ip: "152.16.40.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:02"

2.12.8.1.6. SR-IOV Config host_sriov.yaml

nodes:
-
 name: sriov
 role: Sriov
 ip: 192.168.100.101
 user: ""
 password: ""

SR-IOV testcase update:
<yardstick>/samples/vnf_samples/nsut/vfw/tc_sriov_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

2.12.8.1.6.1. Update contexts section

contexts:
 - name: yardstick
 type: Node
 file: /etc/yardstick/nodes/standalone/pod_trex.yaml
 - type: StandaloneSriov
 file: /etc/yardstick/nodes/standalone/host_sriov.yaml
 name: yardstick
 vm_deploy: True
 flavor:
 images: "/var/lib/libvirt/images/ubuntu.qcow2"
 ram: 4096
 extra_specs:
 hw:cpu_sockets: 1
 hw:cpu_cores: 6
 hw:cpu_threads: 2
 user: "" # update VM username
 password: "" # update password
 servers:
 vnf_0:
 network_ports:
 mgmt:
 cidr: '1.1.1.61/24' # Update VM IP address, if static, <ip>/<mask> or if dynamic, <start of ip>/<mask>
 xe0:
 - uplink_0
 xe1:
 - downlink_0
 networks:
 uplink_0:
 phy_port: "0000:05:00.0"
 vpci: "0000:00:07.0"
 cidr: '152.16.100.10/24'
 gateway_ip: '152.16.100.20'
 downlink_0:
 phy_port: "0000:05:00.1"
 vpci: "0000:00:08.0"
 cidr: '152.16.40.10/24'
 gateway_ip: '152.16.100.20'

2.12.8.1.7. SRIOV configuration options

The only configuration option available for SRIOV is vpci. It is used as base
address for VFs that are created during SRIOV test case execution.

networks:
 uplink_0:
 phy_port: "0000:05:00.0"
 vpci: "0000:00:07.0"
 cidr: '152.16.100.10/24'
 gateway_ip: '152.16.100.20'
 downlink_0:
 phy_port: "0000:05:00.1"
 vpci: "0000:00:08.0"
 cidr: '152.16.40.10/24'
 gateway_ip: '152.16.100.20'

2.12.8.1.7.1. VM image properties

VM image properties example under flavor section:

flavor:
 images: <path>
 ram: 8192
 extra_specs:
 machine_type: 'pc-i440fx-xenial'
 hw:cpu_sockets: 1
 hw:cpu_cores: 6
 hw:cpu_threads: 2
 hw_socket: 0
 cputune: |
 <cputune>
 <vcpupin vcpu="0" cpuset="7"/>
 <vcpupin vcpu="1" cpuset="8"/>
 ...
 <vcpupin vcpu="11" cpuset="18"/>
 <emulatorpin cpuset="11"/>
 </cputune>
 user: ""
 password: ""

VM image properties description:

	Parameters

	Detail

	images

	
Path to the VM image generated by
nsb_setup.sh

Default path is /var/lib/libvirt/images/

Default file name yardstick-nsb-image.img
or yardstick-image.img

	ram

	
Amount of RAM to be used for VM

Default is 4096 MB

	hw:cpu_sockets

	
Number of sockets provided to the guest VM

Default is 1

	hw:cpu_cores

	
Number of cores provided to the guest VM

Default is 2

	hw:cpu_threads

	
Number of threads provided to the guest VM

Default is 2

	hw_socket

	
Generate vcpu cpuset from given HW socket

Default is 0

	cputune

	
Maps virtual cpu with logical cpu

	machine_type

	
Machine type to be emulated in VM

Default is ‘pc-i440fx-xenial’

	user

	
User name to access the VM

Default value is ‘root’

	password

	
Password to access the VM

2.12.8.2. OVS-DPDK

2.12.8.2.1. OVS-DPDK Pre-requisites

	On Host, where VM is created:
	
	Create and configure a bridge named br-int for VM to connect to
external network. Currently this can be done using VXLAN tunnel.

Execute the following on host, where VM is created:

ip link add type vxlan remote <Jumphost IP> local <DUT IP> id <ID: 10> dstport 4789
brctl addbr br-int
brctl addif br-int vxlan0
ip link set dev vxlan0 up
ip addr add <IP#1, like: 172.20.2.1/24> dev br-int
ip link set dev br-int up

Note

May be needed to add extra rules to iptable to forward traffic.

iptables -A FORWARD -i br-int -s <network ip address>/<netmask> -j ACCEPT
iptables -A FORWARD -o br-int -d <network ip address>/<netmask> -j ACCEPT

Execute the following on a jump host:

ip link add type vxlan remote <DUT IP> local <Jumphost IP> id <ID: 10> dstport 4789
ip addr add <IP#2, like: 172.20.2.2/24> dev vxlan0
ip link set dev vxlan0 up

Note

Host and jump host are different baremetal servers.

	Modify test case management CIDR.
IP addresses IP#1, IP#2 and CIDR must be in the same network.

servers:
 vnf_0:
 network_ports:
 mgmt:
 cidr: '1.1.1.7/24'

	Build guest image for VNF to run.
Most of the sample test cases in Yardstick are using a guest image called
yardstick-nsb-image which deviates from an Ubuntu Cloud Server image
Yardstick has a tool for building this custom image with SampleVNF.
It is necessary to have sudo rights to use this tool.

You may need to install several additional packages to use this tool, by
following the commands below:

sudo apt-get update && sudo apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where
Yardstick is installed:

export YARD_IMG_ARCH='amd64'
sudo echo "Defaults env_keep += \'YARD_IMG_ARCH\'" >> /etc/sudoers
sudo tools/yardstick-img-dpdk-modify tools/ubuntu-server-cloudimg-samplevnf-modify.sh

for more details refer to chapter Yardstick Installation

Note

VM should be build with static IP and should be accessible from
yardstick host.

	OVS & DPDK version:

	OVS 2.7 and DPDK 16.11.1 above version is supported

Refer setup instructions at OVS-DPDK [http://docs.openvswitch.org/en/latest/intro/install/dpdk/] on host.

2.12.8.2.2. OVS-DPDK Config pod.yaml describing Topology

2.12.8.2.3. OVS-DPDK 2-Node setup

 +--------------------+
 | |
 | |
 | DUT |
 | (VNF) |
 | |
 +--------------------+
 | virtio | | virtio |
 +--------+ +--------+
 ^ ^
 | |
 | |
 +--------+ +--------+
 | vHOST0 | | vHOST1 |
+----------+ +-------------------------+
		^ ^		
	(0)<----->(0)	------		
TG1		SUT		
		(ovs-dpdk)		
	(n)<----->(n)	------------------		
+----------+ +-------------------------+
trafficgen_0 host

2.12.8.2.4. OVS-DPDK 3-Node setup - Correlated Traffic

 +--------------------+
 | |
 | |
 | DUT |
 | (VNF) |
 | |
 +--------------------+
 | virtio | | virtio |
 +--------+ +--------+
 ^ ^
 | |
 | |
 +--------+ +--------+
 | vHOST0 | | vHOST1 |
+----------+ +-------------------------+ +------------+
		^ ^				
	(0)<----->(0)	------			TG2	
TG1		SUT			(UDP Replay)	
		(ovs-dpdk)				
	(n)<----->(n)	------	(n)<-->(n)			
+----------+ +-------------------------+ +------------+
trafficgen_0 host trafficgen_1

Before executing Yardstick test cases, make sure that the pod.yaml reflects
the topology and update all the required fields:

cp <yardstick>/etc/yardstick/nodes/standalone/trex_bm.yaml.sample /etc/yardstick/nodes/standalone/pod_trex.yaml
cp <yardstick>/etc/yardstick/nodes/standalone/host_ovs.yaml /etc/yardstick/nodes/standalone/host_ovs.yaml

Note

Update all the required fields like ip, user, password, pcis, etc…

2.12.8.2.5. OVS-DPDK Config pod_trex.yaml

nodes:
-
 name: trafficgen_0
 role: TrafficGen
 ip: 1.1.1.1
 user: root
 password: r00t
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.0"
 driver: i40e # default kernel driver
 dpdk_port_num: 0
 local_ip: "152.16.100.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:01"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:07:00.1"
 driver: i40e # default kernel driver
 dpdk_port_num: 1
 local_ip: "152.16.40.20"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:02"

2.12.8.2.6. OVS-DPDK Config host_ovs.yaml

nodes:
-
 name: ovs_dpdk
 role: OvsDpdk
 ip: 192.168.100.101
 user: ""
 password: ""

ovs_dpdk testcase update:
<yardstick>/samples/vnf_samples/nsut/vfw/tc_ovs_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

2.12.8.2.6.1. Update contexts section

contexts:
 - name: yardstick
 type: Node
 file: /etc/yardstick/nodes/standalone/pod_trex.yaml
 - type: StandaloneOvsDpdk
 name: yardstick
 file: /etc/yardstick/nodes/standalone/pod_ovs.yaml
 vm_deploy: True
 ovs_properties:
 version:
 ovs: 2.7.0
 dpdk: 16.11.1
 pmd_threads: 2
 ram:
 socket_0: 2048
 socket_1: 2048
 queues: 4
 vpath: "/usr/local"

 flavor:
 images: "/var/lib/libvirt/images/ubuntu.qcow2"
 ram: 4096
 extra_specs:
 hw:cpu_sockets: 1
 hw:cpu_cores: 6
 hw:cpu_threads: 2
 user: "" # update VM username
 password: "" # update password
 servers:
 vnf_0:
 network_ports:
 mgmt:
 cidr: '1.1.1.61/24' # Update VM IP address, if static, <ip>/<mask> or if dynamic, <start of ip>/<mask>
 xe0:
 - uplink_0
 xe1:
 - downlink_0
 networks:
 uplink_0:
 phy_port: "0000:05:00.0"
 vpci: "0000:00:07.0"
 cidr: '152.16.100.10/24'
 gateway_ip: '152.16.100.20'
 downlink_0:
 phy_port: "0000:05:00.1"
 vpci: "0000:00:08.0"
 cidr: '152.16.40.10/24'
 gateway_ip: '152.16.100.20'

2.12.8.2.7. OVS-DPDK configuration options

There are number of configuration options available for OVS-DPDK context in
test case. Mostly they are used for performance tuning.

2.12.8.2.7.1. OVS-DPDK properties:

OVS-DPDK properties example under ovs_properties section:

ovs_properties:
 version:
 ovs: 2.8.1
 dpdk: 17.05.2
 pmd_threads: 4
 pmd_cpu_mask: "0x3c"
 ram:
 socket_0: 2048
 socket_1: 2048
 queues: 2
 vpath: "/usr/local"
 max_idle: 30000
 lcore_mask: 0x02
 dpdk_pmd-rxq-affinity:
 0: "0:2,1:2"
 1: "0:2,1:2"
 2: "0:3,1:3"
 3: "0:3,1:3"
 vhost_pmd-rxq-affinity:
 0: "0:3,1:3"
 1: "0:3,1:3"
 2: "0:4,1:4"
 3: "0:4,1:4"

OVS-DPDK properties description:

	Parameters

	Detail

	version

	
Version of OVS and DPDK to be installed

There is a relation between OVS and DPDK
 version which can be found at
OVS-DPDK-versions [http://docs.openvswitch.org/en/latest/faq/releases/]

By default OVS: 2.6.0, DPDK: 16.07.2

	lcore_mask

	
Core bitmask used during DPDK initialization
where the non-datapath OVS-DPDK threads such
as handler and revalidator threads run

	pmd_cpu_mask

	
Core bitmask that sets which cores are used by

OVS-DPDK for datapath packet processing

	pmd_threads

	
Number of PMD threads used by OVS-DPDK for
datapath

This core mask is evaluated in Yardstick

It will be used if pmd_cpu_mask is not given

Default is 2

	ram

	
Amount of RAM to be used for each socket, MB

Default is 2048 MB

	queues

	
Number of RX queues used for DPDK physical
interface

	dpdk_pmd-rxq-affinity

	
RX queue assignment to PMD threads for DPDK

e.g.: <port number> : <queue-id>:<core-id>

	vhost_pmd-rxq-affinity

	
RX queue assignment to PMD threads for vhost

e.g.: <port number> : <queue-id>:<core-id>

	vpath

	
User path for openvswitch files

Default is /usr/local

	max_idle

	
The maximum time that idle flows will remain
cached in the datapath, ms

2.12.8.2.7.2. VM image properties

VM image properties are same as for SRIOV VM image properties.

2.12.9. OpenStack with SR-IOV support

This section describes how to run a Sample VNF test case, using Heat context,
with SR-IOV. It also covers how to install OpenStack in Ubuntu 16.04, using
DevStack, with SR-IOV support.

2.12.9.1. Single node OpenStack with external TG

 +----------------------------+
 |OpenStack(DevStack) |
 | |
 | +--------------------+ |
 | |sample-VNF VM | |
 | | | |
 | | DUT | |
 | | (VNF) | |
 | | | |
 | +--------+ +--------+ |
 | | VF NIC | | VF NIC | |
 | +-----+--+--+----+---+ |
 | ^ ^ |
 | | | |
+----------+ +---------+----------+-------+
		VF0 VF1		
		^ ^		
			SUT	
TG	(PF0)<----->(PF0) +---------+			
	(PF1)<----->(PF1) +--------------------+			
+----------+ +----------------------------+
trafficgen_0 host

2.12.9.1.1. Host pre-configuration

Warning

The following configuration requires sudo access to the system.
Make sure that your user have the access.

Enable the Intel VT-d or AMD-Vi extension in the BIOS. Some system
manufacturers disable this extension by default.

Activate the Intel VT-d or AMD-Vi extension in the kernel by modifying the GRUB
config file /etc/default/grub.

For the Intel platform:

...
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"
...

For the AMD platform:

...
GRUB_CMDLINE_LINUX_DEFAULT="amd_iommu=on"
...

Update the grub configuration file and restart the system:

Warning

The following command will reboot the system.

sudo update-grub
sudo reboot

Make sure the extension has been enabled:

sudo journalctl -b 0 | grep -e IOMMU -e DMAR

Feb 06 14:50:14 hostname kernel: ACPI: DMAR 0x000000006C406000 0001E0 (v01 INTEL S2600WF 00000001 INTL 20091013)
Feb 06 14:50:14 hostname kernel: DMAR: IOMMU enabled
Feb 06 14:50:14 hostname kernel: DMAR: Host address width 46
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000d37fc000 flags: 0x0
Feb 06 14:50:14 hostname kernel: DMAR: dmar0: reg_base_addr d37fc000 ver 1:0 cap 8d2078c106f0466 ecap f020de
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000e0ffc000 flags: 0x0
Feb 06 14:50:14 hostname kernel: DMAR: dmar1: reg_base_addr e0ffc000 ver 1:0 cap 8d2078c106f0466 ecap f020de
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000ee7fc000 flags: 0x0

Setup system proxy (if needed). Add the following configuration into the
/etc/environment file:

Note

The proxy server name/port and IPs should be changed according to
actual/current proxy configuration in the lab.

export http_proxy=http://proxy.company.com:port
export https_proxy=http://proxy.company.com:port
export ftp_proxy=http://proxy.company.com:port
export no_proxy=localhost,127.0.0.1,company.com,<IP-OF-HOST1>,<IP-OF-HOST2>,...
export NO_PROXY=localhost,127.0.0.1,company.com,<IP-OF-HOST1>,<IP-OF-HOST2>,...

Upgrade the system:

sudo -EH apt-get update
sudo -EH apt-get upgrade
sudo -EH apt-get dist-upgrade

Install dependencies needed for DevStack

sudo -EH apt-get install python python-dev python-pip

Setup SR-IOV ports on the host:

Note

The enp24s0f0, enp24s0f1 are physical function (PF) interfaces
on a host and enp24s0f3 is a public interface used in OpenStack, so the
interface names should be changed according to the HW environment used for
testing.

sudo ip link set dev enp24s0f0 up
sudo ip link set dev enp24s0f1 up
sudo ip link set dev enp24s0f3 up

Create VFs on PF
echo 2 | sudo tee /sys/class/net/enp24s0f0/device/sriov_numvfs
echo 2 | sudo tee /sys/class/net/enp24s0f1/device/sriov_numvfs

2.12.9.1.2. DevStack installation

If you want to try out NSB, but don’t have OpenStack set-up, you can use
Devstack [https://docs.openstack.org/devstack/pike/>] to install OpenStack on a host. Please note, that the
stable/pike branch of devstack repo should be used during the installation.
The required local.conf configuration file is described below.

DevStack configuration file:

Note

Update the devstack configuration file by replacing angluar brackets
with a short description inside.

Note

Use lspci | grep Ether & lspci -n | grep <PCI ADDRESS>
commands to get device and vendor id of the virtual function (VF).

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
ADMIN_PASSWORD=password
MYSQL_PASSWORD=$ADMIN_PASSWORD
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
HORIZON_PASSWORD=$ADMIN_PASSWORD

Internet access.
RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Services
disable_service n-net
ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-sriov-agt

Heat
enable_plugin heat https://git.openstack.org/openstack/heat stable/pike

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

Neutron Options
FLOATING_RANGE=<RANGE_IN_THE_PUBLIC_INTERFACE_NETWORK>
Q_FLOATING_ALLOCATION_POOL=start=<START_IP_ADDRESS>,end=<END_IP_ADDRESS>
PUBLIC_NETWORK_GATEWAY=<PUBLIC_NETWORK_GATEWAY>
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
Q_USE_PROVIDERNET_FOR_PUBLIC=True
OVS_PHYSICAL_BRIDGE=br-ex
OVS_BRIDGE_MAPPINGS=public:br-ex
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>
PHYSICAL_NETWORK=physnet1,physnet2

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\": \\"physnet2\\" }

[filter_scheduler]
enabled_filters = RetryFilter,AvailabilityZoneFilter,RamFilter,DiskFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter,SameHostFilter

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

Start the devstack installation on a host.

2.12.9.1.3. TG host configuration

Yardstick automatically installs and configures Trex traffic generator on TG
host based on provided POD file (see below). Anyway, it’s recommended to check
the compatibility of the installed NIC on the TG server with software Trex
using the manual [https://trex-tgn.cisco.com/trex/doc/trex_manual.html].

2.12.9.1.4. Run the Sample VNF test case

There is an example of Sample VNF test case ready to be executed in an
OpenStack environment with SR-IOV support: samples/vnf_samples/nsut/vfw/
tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_trex.yaml.

Install Yardstick using Install Yardstick (NSB Testing) steps for OpenStack
context.

Create pod file for TG in the yardstick repo folder located in the yardstick
container:

Note

The ip, user, password and vpci fields show be changed
according to HW environment used for the testing. Use lshw -c network -businfo
command to get the PF PCI address for vpci field.

nodes:
-
 name: trafficgen_1
 role: tg__0
 ip: <TG-HOST-IP>
 user: <TG-USER>
 password: <TG-PASS>
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:18:00.0"
 driver: i40e # default kernel driver
 dpdk_port_num: 0
 local_ip: "10.1.1.150"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:01"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "0000:18:00.1"
 driver: i40e # default kernel driver
 dpdk_port_num: 1
 local_ip: "10.1.1.151"
 netmask: "255.255.255.0"
 local_mac: "00:00:00:00:00:02"

Run the Sample vFW RFC2544 SR-IOV TC (samples/vnf_samples/nsut/vfw/
tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_64B_trex.yaml) in the heat
context using steps described in NS testing - using yardstick CLI section.

2.12.9.2. Multi node OpenStack TG and VNF setup (two nodes)

+----------------------------+ +----------------------------+
OpenStack(DevStack)		OpenStack(DevStack)								
+--------------------+		+--------------------+								
	sample-VNF VM				sample-VNF VM					
	TG				DUT					
	trafficgen_0				(VNF)					
+--------+ +--------+		+--------+ +--------+								
	VF NIC		VF NIC				VF NIC		VF NIC	
+----+---+--+----+---+		+-----+--+--+----+---+								
^ ^		^ ^								
+--------+-----------+-------+ +---------+----------+-------+										
VF0 VF1		VF0 VF1								
^ ^		^ ^								
	SUT2				SUT1					
	+-------+ (PF0)<----->(PF0) +---------+									
+-------------------+ (PF1)<----->(PF1) +--------------------+										
+----------------------------+ +----------------------------+
 host2 (compute) host1 (controller)

2.12.9.2.1. Controller/Compute pre-configuration

Pre-configuration of the controller and compute hosts are the same as
described in Host pre-configuration section.

2.12.9.2.2. DevStack configuration

A reference local.conf for deploying OpenStack in a multi-host environment
using Devstack [https://docs.openstack.org/devstack/pike/>] is shown in this section. The stable/pike branch of
devstack repo should be used during the installation.

Note

Update the devstack configuration files by replacing angluar brackets
with a short description inside.

Note

Use lspci | grep Ether & lspci -n | grep <PCI ADDRESS>
commands to get device and vendor id of the virtual function (VF).

DevStack configuration file for controller host:

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
ADMIN_PASSWORD=password
MYSQL_PASSWORD=$ADMIN_PASSWORD
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
HORIZON_PASSWORD=$ADMIN_PASSWORD
Controller node
SERVICE_HOST=$HOST_IP
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292

Internet access.
RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Services
disable_service n-net
ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-sriov-agt

Heat
enable_plugin heat https://git.openstack.org/openstack/heat stable/pike

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

Neutron Options
FLOATING_RANGE=<RANGE_IN_THE_PUBLIC_INTERFACE_NETWORK>
Q_FLOATING_ALLOCATION_POOL=start=<START_IP_ADDRESS>,end=<END_IP_ADDRESS>
PUBLIC_NETWORK_GATEWAY=<PUBLIC_NETWORK_GATEWAY>
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
Q_USE_PROVIDERNET_FOR_PUBLIC=True
OVS_PHYSICAL_BRIDGE=br-ex
OVS_BRIDGE_MAPPINGS=public:br-ex
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>
PHYSICAL_NETWORK=physnet1,physnet2

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\": \\"physnet2\\" }

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

DevStack configuration file for compute host:

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
MYSQL_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
ADMIN_PASSWORD=password
SERVICE_PASSWORD=password
HORIZON_PASSWORD=password
Controller node
SERVICE_HOST=<CONTROLLER_IP_ADDRESS>
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292

Internet access.
RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

Services
ENABLED_SERVICES=n-cpu,rabbit,q-agt,placement-api,q-sriov-agt

Neutron Options
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\": \\"physnet2\\" }

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

Start the devstack installation on the controller and compute hosts.

2.12.9.2.3. Run the sample vFW TC

Install Yardstick using Install Yardstick (NSB Testing) steps for OpenStack
context.

Run the sample vFW RFC2544 SR-IOV test case
(samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml)
in the heat context using steps described in
NS testing - using yardstick CLI section and the following Yardstick command
line arguments:

yardstick -d task start --task-args='{"provider": "sriov"}' \
samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

2.12.10. Enabling other Traffic generators

2.12.10.1. IxLoad

	Software needed: IxLoadAPI <IxLoadTclApi verson>Linux64.bin.tgz and
<IxOS version>Linux64.bin.tar.gz (Download from ixia support site)
Install - <IxLoadTclApi verson>Linux64.bin.tgz and
<IxOS version>Linux64.bin.tar.gz
If the installation was not done inside the container, after installing
the IXIA client, check /opt/ixia/ixload/<ver>/bin/ixloadpython and make
sure you can run this cmd inside the yardstick container. Usually user is
required to copy or link /opt/ixia/python/<ver>/bin/ixiapython to
/usr/bin/ixiapython<ver> inside the container.

	Update pod_ixia.yaml file with ixia details.

cp <repo>/etc/yardstick/nodes/pod.yaml.nsb.sample.ixia \
 etc/yardstick/nodes/pod_ixia.yaml

Config pod_ixia.yaml

nodes:
-
 name: trafficgen_1
 role: IxNet
 ip: 1.2.1.1 #ixia machine ip
 user: user
 password: r00t
 key_filename: /root/.ssh/id_rsa
 tg_config:
 ixchassis: "1.2.1.7" #ixia chassis ip
 tcl_port: "8009" # tcl server port
 lib_path: "/opt/ixia/ixos-api/8.01.0.2/lib/ixTcl1.0"
 root_dir: "/opt/ixia/ixos-api/8.01.0.2/"
 py_bin_path: "/opt/ixia/ixload/8.01.106.3/bin/"
 dut_result_dir: "/mnt/ixia"
 version: 8.1
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "2:5" # Card:port
 driver: "none"
 dpdk_port_num: 0
 local_ip: "152.16.100.20"
 netmask: "255.255.0.0"
 local_mac: "00:98:10:64:14:00"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "2:6" # [(Card, port)]
 driver: "none"
 dpdk_port_num: 1
 local_ip: "152.40.40.20"
 netmask: "255.255.0.0"
 local_mac: "00:98:28:28:14:00"

for sriov/ovs_dpdk pod files, please refer to Standalone Virtualization
for ovs-dpdk/sriov configuration

	Start IxOS TCL Server (Install ‘Ixia IxExplorer IxOS <version>’)
You will also need to configure the IxLoad machine to start the IXIA
IxosTclServer. This can be started like so:

	Connect to the IxLoad machine using RDP

	Go to:
Start->Programs->Ixia->IxOS->IxOS 8.01-GA-Patch1->Ixia Tcl Server IxOS 8.01-GA-Patch1
or
C:\Program Files (x86)\Ixia\IxOS\8.01-GA-Patch1\ixTclServer.exe

	Create a folder Results in c:and share the folder on the network.

	Execute testcase in samplevnf folder e.g.
<repo>/samples/vnf_samples/nsut/vfw/tc_baremetal_http_ixload_1b_Requests-65000_Concurrency.yaml

2.12.10.2. IxNetwork

IxNetwork testcases use IxNetwork API Python Bindings module, which is
installed as part of the requirements of the project.

	Update pod_ixia.yaml file with ixia details.

cp <repo>/etc/yardstick/nodes/pod.yaml.nsb.sample.ixia \
etc/yardstick/nodes/pod_ixia.yaml

Configure pod_ixia.yaml

nodes:
-
 name: trafficgen_1
 role: IxNet
 ip: 1.2.1.1 #ixia machine ip
 user: user
 password: r00t
 key_filename: /root/.ssh/id_rsa
 tg_config:
 ixchassis: "1.2.1.7" #ixia chassis ip
 tcl_port: "8009" # tcl server port
 lib_path: "/opt/ixia/ixos-api/8.01.0.2/lib/ixTcl1.0"
 root_dir: "/opt/ixia/ixos-api/8.01.0.2/"
 py_bin_path: "/opt/ixia/ixload/8.01.106.3/bin/"
 dut_result_dir: "/mnt/ixia"
 version: 8.1
 interfaces:
 xe0: # logical name from topology.yaml and vnfd.yaml
 vpci: "2:5" # Card:port
 driver: "none"
 dpdk_port_num: 0
 local_ip: "152.16.100.20"
 netmask: "255.255.0.0"
 local_mac: "00:98:10:64:14:00"
 xe1: # logical name from topology.yaml and vnfd.yaml
 vpci: "2:6" # [(Card, port)]
 driver: "none"
 dpdk_port_num: 1
 local_ip: "152.40.40.20"
 netmask: "255.255.0.0"
 local_mac: "00:98:28:28:14:00"

for sriov/ovs_dpdk pod files, please refer to above
Standalone Virtualization for ovs-dpdk/sriov configuration

	Start IxNetwork TCL Server
You will also need to configure the IxNetwork machine to start the IXIA
IxNetworkTclServer. This can be started like so:

	Connect to the IxNetwork machine using RDP

	Go to:
Start->Programs->Ixia->IxNetwork->IxNetwork 7.21.893.14 GA->IxNetworkTclServer
(or IxNetworkApiServer)

	Execute testcase in samplevnf folder e.g.
<repo>/samples/vnf_samples/nsut/vfw/tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

2.12.11. Spirent Landslide

In order to use Spirent Landslide for vEPC testcases, some dependencies have
to be preinstalled and properly configured.

	Java

32-bit Java installation is required for the Spirent Landslide TCL API.

$ sudo apt-get install openjdk-8-jdk:i386

Important

Make sure LD_LIBRARY_PATH is pointing to 32-bit JRE. For more details
check Linux Troubleshooting <http://TAS_HOST_IP/tclapiinstall.html#trouble>
section of installation instructions.

	LsApi (Tcl API module)

Follow Landslide documentation for detailed instructions on Linux
installation of Tcl API and its dependencies
http://TAS_HOST_IP/tclapiinstall.html.
For working with LsApi Python wrapper only steps 1-5 are required.

Note

After installation make sure your API home path is included in
PYTHONPATH environment variable.

Important

The current version of LsApi module has an issue with reading LD_LIBRARY_PATH.
For LsApi module to initialize correctly following lines (184-186) in
lsapi.py

ldpath = os.environ.get('LD_LIBRARY_PATH', '')
if ldpath == '':
 environ['LD_LIBRARY_PATH'] = environ['LD_LIBRARY_PATH'] + ':' + ldpath

should be changed to:

ldpath = os.environ.get('LD_LIBRARY_PATH', '')
if not ldpath == '':
 environ['LD_LIBRARY_PATH'] = environ['LD_LIBRARY_PATH'] + ':' + ldpath

Note

The Spirent landslide TCL software package needs to be updated in case
the user upgrades to a new version of Spirent landslide software.

2.13. Yardstick - NSB Testing - Operation

2.13.1. Abstract

NSB test configuration and OpenStack setup requirements

2.13.2. OpenStack Network Configuration

NSB requires certain OpenStack deployment configurations.
For optimal VNF characterization using external traffic generators NSB requires
provider/external networks.

2.13.2.1. Provider networks

The VNFs require a clear L2 connect to the external network in order to
generate realistic traffic from multiple address ranges and ports.

In order to prevent Neutron from filtering traffic we have to disable Neutron
Port Security. We also disable DHCP on the data ports because we are binding
the ports to DPDK and do not need DHCP addresses. We also disable gateways
because multiple default gateways can prevent SSH access to the VNF from the
floating IP. We only want a gateway on the mgmt network

uplink_0:
 cidr: '10.1.0.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'

2.13.2.2. Heat Topologies

By default Heat will attach every node to every Neutron network that is
created. For scale-out tests we do not want to attach every node to every
network.

For each node you can specify which ports are on which network using the
network_ports dictionary.

In this example we have TRex xe0 <-> xe0 VNF xe1 <-> xe0 UDP_Replay

vnf_0:
 floating_ip: true
 placement: "pgrp1"
 network_ports:
 mgmt:
 - mgmt
 uplink_0:
 - xe0
 downlink_0:
 - xe1
tg_0:
 floating_ip: true
 placement: "pgrp1"
 network_ports:
 mgmt:
 - mgmt
 uplink_0:
 - xe0
 # Trex always needs two ports
 uplink_1:
 - xe1
tg_1:
 floating_ip: true
 placement: "pgrp1"
 network_ports:
 mgmt:
 - mgmt
 downlink_0:
 - xe0

2.13.2.3. Availability zone

The configuration of the availability zone is requred in cases where location
of exact compute host/group of compute hosts needs to be specified for
SampleVNF or traffic generator in the heat test case. If this is the
case, please follow the instructions below.

	Create a host aggregate in the OpenStack and add the available compute hosts
into the aggregate group.

Note

Change the <AZ_NAME> (availability zone name), <AGG_NAME>
(host aggregate name) and <HOST> (host name of one of the compute) in the
commands below.

create host aggregate
openstack aggregate create --zone <AZ_NAME> \
 --property availability_zone=<AZ_NAME> <AGG_NAME>
show available hosts
openstack compute service list --service nova-compute
add selected host into the host aggregate
openstack aggregate add host <AGG_NAME> <HOST>

	To specify the OpenStack location (the exact compute host or group of the hosts)
of SampleVNF or traffic generator in the heat test case, the availability_zone server
configuration option should be used. For example:

Note

The <AZ_NAME> (availability zone name) should be changed according
to the name used during the host aggregate creation steps above.

context:
 name: yardstick
 image: yardstick-samplevnfs
 ...
 servers:
 vnf_0:
 ...
 availability_zone: <AZ_NAME>
 ...
 tg__0:
 ...
 availability_zone: <AZ_NAME>
 ...
 networks:
 ...

There are two example of SampleVNF scale out test case which use the
availability zone feature to specify the exact location of scaled VNFs and
traffic generators.

Those are:

<repo>/samples/vnf_samples/nsut/prox/tc_prox_heat_context_l2fwd_multiflow-2-scale-out.yaml
<repo>/samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale_out.yaml

Note

This section describes the PROX scale-out testcase, but the same
procedure is used for the vFW test case.

	Before running the scale-out test case, make sure the host aggregates are
configured in the OpenStack environment. To check this, run the following
command:

show configured host aggregates (example)
openstack aggregate list
+----+------+-------------------+
| ID | Name | Availability Zone |
+----+------+-------------------+
| 4 | agg0 | AZ_NAME_0 |
| 5 | agg1 | AZ_NAME_1 |
+----+------+-------------------+

	If no host aggregates are configured, please follow the instructions to
Create a host aggregate

	Run the SampleVNF PROX scale-out test case, specifying the
availability zone of each VNF and traffic generator as task arguments.

Note

The az_0 and az_1 should be changed according to the host
aggregates created in the OpenStack.

yardstick -d task start \
<repo>/samples/vnf_samples/nsut/prox/tc_prox_heat_context_l2fwd_multiflow-2-scale-out.yaml\
 --task-args='{
 "num_vnfs": 4, "availability_zone": {
 "vnf_0": "az_0", "tg_0": "az_1",
 "vnf_1": "az_0", "tg_1": "az_1",
 "vnf_2": "az_0", "tg_2": "az_1",
 "vnf_3": "az_0", "tg_3": "az_1"
 }
 }'

num_vnfs specifies how many VNFs are going to be deployed in the
heat contexts. vnf_X and tg_X arguments configure the
availability zone where the VNF and traffic generator is going to be deployed.

2.13.3. Collectd KPIs

NSB can collect KPIs from collected. We have support for various plugins
enabled by the Barometer project.

The default yardstick-samplevnf has collectd installed. This allows for
collecting KPIs from the VNF.

Collecting KPIs from the NFVi is more complicated and requires manual setup.
We assume that collectd is not installed on the compute nodes.

To collectd KPIs from the NFVi compute nodes:

	install_collectd on the compute nodes

	create pod.yaml for the compute nodes

	enable specific plugins depending on the vswitch and DPDK

example pod.yaml section for Compute node running collectd.

-
 name: "compute-1"
 role: Compute
 ip: "10.1.2.3"
 user: "root"
 ssh_port: "22"
 password: ""
 collectd:
 interval: 5
 plugins:
 # for libvirtd stats
 virt: {}
 intel_pmu: {}
 ovs_stats:
 # path to OVS socket
 ovs_socket_path: /var/run/openvswitch/db.sock
 intel_rdt: {}

2.13.4. Scale-Up

VNFs performance data with scale-up

	Helps to figure out optimal number of cores specification in the Virtual
Machine template creation or VNF

	Helps in comparison between different VNF vendor offerings

	Better the scale-up index, indicates the performance scalability of a
particular solution

2.13.4.1. Heat

For VNF scale-up tests we increase the number for VNF worker threads. In the
case of VNFs we also need to increase the number of VCPUs and memory allocated
to the VNF.

An example scale-up Heat testcase is:

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
{% set framesize = framesize or "{64B: 100}" %}
{% set mem = mem or 20480 %}
{% set vcpus = vcpus or 10 %}
{% set vports = vports or 2 %}

schema: yardstick:task:0.1
scenarios:
- type: NSPerf
 traffic_profile: ../../traffic_profiles/ipv4_throughput-scale-up.yaml
 extra_args:
 vports: {{ vports }}
 topology: vfw-tg-topology-scale-up.yaml
 nodes:
 tg__0: trafficgen_0.yardstick
 vnf__0: vnf_0.yardstick
 options:
 framesize:
 uplink: {{ framesize }}
 downlink: {{ framesize }}
 flow:
 src_ip: [
{% for vport in range(0,vports,2|int) %}
 {'tg__0': 'xe{{vport}}'},
{% endfor %}]
 dst_ip: [
{% for vport in range(1,vports,2|int) %}
 {'tg__0': 'xe{{vport}}'},
{% endfor %}]
 count: 1
 traffic_type: 4
 rfc2544:
 allowed_drop_rate: 0.0001 - 0.0001
 vnf__0:
 rules: acl_1rule.yaml
 vnf_config: {lb_config: 'SW', file: vfw_vnf_pipeline_cores_{{vcpus}}_ports_{{vports}}_lb_1_sw.conf }
 runner:
 type: Iteration
 iterations: 10
 interval: 35
context:
 # put node context first, so we don't HEAT deploy if node has errors
 name: yardstick
 image: yardstick-samplevnfs
 flavor:
 vcpus: {{ vcpus }}
 ram: {{ mem }}
 disk: 6
 extra_specs:
 hw:cpu_sockets: 1
 hw:cpu_cores: {{ vcpus }}
 hw:cpu_threads: 1
 user: ubuntu
 placement_groups:
 pgrp1:
 policy: "availability"
 servers:
 trafficgen_0:
 floating_ip: true
 placement: "pgrp1"
 vnf_0:
 floating_ip: true
 placement: "pgrp1"
 networks:
 mgmt:
 cidr: '10.0.1.0/24'
{% for vport in range(1,vports,2|int) %}
 uplink_{{loop.index0}}:
 cidr: '10.1.{{vport}}.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'
 downlink_{{loop.index0}}:
 cidr: '10.1.{{vport+1}}.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'
{% endfor %}

This testcase template requires specifying the number of VCPUs, Memory and Ports.
We set the VCPUs and memory using the --task-args options

yardstick task start --task-args='{"mem": 10480, "vcpus": 4, "vports": 2}' \
samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale-up.yaml

In order to support ports scale-up, traffic and topology templates need to be used in testcase.

A example topology template is:

Copyright (c) 2016-2018 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

{% set vports = get(extra_args, 'vports', '2') %}
nsd:nsd-catalog:
 nsd:
 - id: 3tg-topology
 name: 3tg-topology
 short-name: 3tg-topology
 description: 3tg-topology
 constituent-vnfd:
 - member-vnf-index: '1'
 vnfd-id-ref: tg__0
 VNF model: ../../vnf_descriptors/tg_rfc2544_tpl.yaml #VNF type
 - member-vnf-index: '2'
 vnfd-id-ref: vnf__0
 VNF model: ../../vnf_descriptors/vfw_vnf.yaml #VNF type

 vld:
{% for vport in range(0,vports,2|int) %}
 - id: uplink_{{loop.index0}}
 name: tg__0 to vnf__0 link {{vport + 1}}
 type: ELAN
 vnfd-connection-point-ref:
 - member-vnf-index-ref: '1'
 vnfd-connection-point-ref: xe{{vport}}
 vnfd-id-ref: tg__0
 - member-vnf-index-ref: '2'
 vnfd-connection-point-ref: xe{{vport}}
 vnfd-id-ref: vnf__0
 - id: downlink_{{loop.index0}}
 name: vnf__0 to tg__0 link {{vport + 2}}
 type: ELAN
 vnfd-connection-point-ref:
 - member-vnf-index-ref: '2'
 vnfd-connection-point-ref: xe{{vport+1}}
 vnfd-id-ref: vnf__0
 - member-vnf-index-ref: '1'
 vnfd-connection-point-ref: xe{{vport+1}}
 vnfd-id-ref: tg__0
{% endfor %}

This template has vports as an argument. To pass this argument it needs to
be configured in extra_args scenario definition. Please note that more
argument can be defined in that section. All of them will be passed to topology
and traffic profile templates

For example:

schema: yardstick:task:0.1
scenarios:
- type: NSPerf
 traffic_profile: ../../traffic_profiles/ipv4_throughput-scale-up.yaml
 extra_args:
 vports: {{ vports }}
 topology: vfw-tg-topology-scale-up.yaml

A example traffic profile template is:

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

flow definition for ACL tests - 1K flows - ipv4 only
#
the number of flows defines the widest range of parameters
for example if srcip_range=1.0.0.1-1.0.0.255 and dst_ip_range=10.0.0.1-10.0.1.255
and it should define only 16 flows
#
there is assumption that packets generated will have a random sequences of following addresses pairs
in the packets
1. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
2. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
...
512. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
#
not all combination should be filled
Any other field with random range will be added to flow definition
#
the example.yaml provides all possibilities for traffic generation
#
the profile defines a public and private side to make limited traffic correlation
between private and public side same way as it is made by IXIA solution.
#
{% set vports = get(extra_args, 'vports', 2) %}

schema: "nsb:traffic_profile:0.1"

This file is a template, it will be filled with values from tc.yaml before passing to the traffic generator

name: rfc2544
description: Traffic profile to run RFC2544 latency
traffic_profile:
 traffic_type: RFC2544Profile # defines traffic behavior - constant or look for highest possible throughput
 frame_rate: 100 # pc of linerate
 duration: {{ duration }}

{% for vport in range((vports / 2)|int) %}
uplink_{{vport}}:
 ipv4:
 id: {{ (vport * 2) + 1 }}
 outer_l2:
 framesize:
 64B: "{{ get(imix, 'imix.uplink.64B', '0') }}"
 128B: "{{ get(imix, 'imix.uplink.128B', '0') }}"
 256B: "{{ get(imix, 'imix.uplink.256B', '0') }}"
 373b: "{{ get(imix, 'imix.uplink.373B', '0') }}"
 512B: "{{ get(imix, 'imix.uplink.512B', '0') }}"
 570B: "{{ get(imix, 'imix.uplink.570B', '0') }}"
 1024B: "{{get(imix, 'imix.uplink.1024B', '0') }}"
 1400B: "{{ get(imix, 'imix.uplink.1400B', '0') }}"
 1500B: "{{ get(imix, 'imix.uplink.1500B', '0') }}"
 1518B: "{{ get(imix, 'imix.uplink.1518B', '0') }}"
 outer_l3v4:
 proto: "udp"
 srcip4: {{ get(flow, 'flow.src_ip_%s'| format(vport), '1.%s.1.1-1.%s.255.255'| format(vport, vport)) }}
 dstip4: {{ get(flow, 'flow.dst_ip_%s'| format(vport), '90.%s.1.1-90.%s.255.255'| format(vport, vport)) }}
 count: {{ get(flow, 'flow.count', '1') }}
 ttl: 32
 dscp: 0
 outer_l4:
 srcport: {{ get(flow, 'flow.src_port_%s'| format(vport), '1234-4321') }}
 dstport: {{ get(flow, 'flow.dst_port_%s'| format(vport), '2001-4001') }}
 count: {{ get(flow, 'flow.count', '1') }}
downlink_{{vport}}:
 ipv4:
 id: {{ (vport * 2) + 2}}
 outer_l2:
 framesize:
 64B: "{{ get(imix, 'imix.downlink.64B', '0') }}"
 128B: "{{ get(imix, 'imix.downlink.128B', '0') }}"
 256B: "{{ get(imix, 'imix.downlink.256B', '0') }}"
 373b: "{{ get(imix, 'imix.downlink.373B', '0') }}"
 512B: "{{ get(imix, 'imix.downlink.512B', '0') }}"
 570B: "{{ get(imix, 'imix.downlink.570B', '0') }}"
 1024B: "{{get(imix, 'imix.downlink.1024B', '0') }}"
 1400B: "{{ get(imix, 'imix.downlink.1400B', '0') }}"
 1500B: "{{ get(imix, 'imix.downlink.1500B', '0') }}"
 1518B: "{{ get(imix, 'imix.downlink.1518B', '0') }}"

 outer_l3v4:
 proto: "udp"
 srcip4: {{ get(flow, 'flow.dst_ip_%s'| format(vport), '90.%s.1.1-90.%s.255.255'| format(vport, vport)) }}
 dstip4: {{ get(flow, 'flow.src_ip_%s'| format(vport), '1.%s.1.1-1.%s.255.255'| format(vport, vport)) }}
 count: {{ get(flow, 'flow.count', '1') }}
 ttl: 32
 dscp: 0
 outer_l4:
 srcport: {{ get(flow, 'flow.dst_port_%s'| format(vport), '1234-4321') }}
 dstport: {{ get(flow, 'flow.src_port_%s'| format(vport), '2001-4001') }}
 count: {{ get(flow, 'flow.count', '1') }}
{% endfor %}

There is an option to provide predefined config for SampleVNFs. Path to config
file may by specified in vnf_config scenario section.

vnf__0:
 rules: acl_1rule.yaml
 vnf_config: {lb_config: 'SW', file: vfw_vnf_pipeline_cores_4_ports_2_lb_1_sw.conf }

2.13.4.2. Baremetal

	Follow above traffic generator section to setup.

	Edit num of threads in
<repo>/samples/vnf_samples/nsut/vfw/tc_baremetal_rfc2544_ipv4_trex_scale_up.yaml
e.g, 6 Threads for given VNF

schema: yardstick:task:0.1
scenarios:
{% for worker_thread in [1, 2 ,3 , 4, 5, 6] %}
- type: NSPerf
 traffic_profile: ../../traffic_profiles/ipv4_throughput.yaml
 topology: vfw-tg-topology.yaml
 nodes:
 tg__0: trafficgen_0.yardstick
 vnf__0: vnf_0.yardstick
 options:
 framesize:
 uplink: {64B: 100}
 downlink: {64B: 100}
 flow:
 src_ip: [{'tg__0': 'xe0'}]
 dst_ip: [{'tg__0': 'xe1'}]
 count: 1
 traffic_type: 4
 rfc2544:
 allowed_drop_rate: 0.0001 - 0.0001
 vnf__0:
 rules: acl_1rule.yaml
 vnf_config: {lb_config: 'HW', lb_count: 1, worker_config: '1C/1T', worker_threads: {{worker_thread}}}
 nfvi_enable: True
 runner:
 type: Iteration
 iterations: 10
 interval: 35
{% endfor %}
context:
 type: Node
 name: yardstick
 nfvi_type: baremetal
 file: /etc/yardstick/nodes/pod.yaml

2.13.5. Scale-Out

VNFs performance data with scale-out helps

	capacity planning to meet the given network node requirements

	comparison between different VNF vendor offerings

	better the scale-out index, provides the flexibility in meeting future
capacity requirements

2.13.5.1. Standalone

Scale-out not supported on Baremetal.

	Follow above traffic generator section to setup.

	Generate testcase for standalone virtualization using ansible scripts

cd <repo>/ansible
trex: standalone_ovs_scale_out_test.yaml or standalone_sriov_scale_out_test.yaml
ixia: standalone_ovs_scale_out_ixia_test.yaml or standalone_sriov_scale_out_ixia_test.yaml
ixia_correlated: standalone_ovs_scale_out_ixia_correlated_test.yaml or standalone_sriov_scale_out_ixia_correlated_test.yaml

update the ovs_dpdk or sriov above Ansible scripts reflect the setup

	run the test

<repo>/samples/vnf_samples/nsut/tc_sriov_vfw_udp_ixia_correlated_scale_out-1.yaml
<repo>/samples/vnf_samples/nsut/tc_sriov_vfw_udp_ixia_correlated_scale_out-2.yaml

2.13.5.2. Heat

There are sample scale-out all-VM Heat tests. These tests only use VMs and
don’t use external traffic.

The tests use UDP_Replay and correlated traffic.

<repo>/samples/vnf_samples/nsut/cgnapt/tc_heat_rfc2544_ipv4_1flow_64B_trex_correlated_scale_4.yaml

To run the test you need to increase OpenStack CPU, Memory and Port quotas.

2.13.6. Traffic Generator tuning

The TRex traffic generator can be setup to use multiple threads per core, this
is for multiqueue testing.

TRex does not automatically enable multiple threads because we currently cannot
detect the number of queues on a device.

To enable multiple queue set the queues_per_port value in the TG VNF
options section.

scenarios:
 - type: NSPerf
 nodes:
 tg__0: trafficgen_0.yardstick

 options:
 tg_0:
 queues_per_port: 2

2.13.7. Standalone configuration

NSB supports certain Standalone deployment configurations.
Standalone supports provisioning a VM in a standalone visualised environment using kvm/qemu.
There two types of Standalone contexts available: OVS-DPDK and SRIOV.
OVS-DPDK uses OVS network with DPDK drivers.
SRIOV enables network traffic to bypass the software switch layer of the Hyper-V stack.

2.13.7.1. Emulated machine type

For better performance test results of emulated VM spawned by Yardstick SA
context (OvS-DPDK/SRIOV), it may be important to control the emulated machine
type used by QEMU emulator. This attribute can be configured via TC definition
in contexts section under extra_specs configuration.

For example:

contexts:
 ...
 - type: StandaloneSriov
 ...
 flavor:
 ...
 extra_specs:
 ...
 machine_type: pc-i440fx-bionic

Where, machine_type can be set to one of the emulated machine type
supported by QEMU running on SUT platform. To get full list of supported
emulated machine types, the following command can be used on the target SUT
host.

qemu-system-x86_64 -machine ?

By default, the machine_type option is set to pc-i440fx-xenial which is
suitable for running Ubuntu 16.04 VM image. So, if this type is not supported
by the target platform or another VM image is used for stand alone (SA) context
VM (e.g.: bionic image for Ubuntu 18.04), this configuration should be
changed accordingly.

2.13.7.2. Standalone with OVS-DPDK

SampleVNF image is spawned in a VM on a baremetal server.
OVS with DPDK is installed on the baremetal server.

Note

Ubuntu 17.10 requires DPDK v.17.05 and higher, DPDK v.17.05 requires OVS v.2.8.0.

Default values for OVS-DPDK:

	queues: 4

	lcore_mask: “”

	pmd_cpu_mask: “0x6”

2.13.7.3. Sample test case file

	Prepare SampleVNF image and copy it to flavor/images.

	Prepare context files for TREX and SampleVNF under contexts/file.

	Add bridge named br-int to the baremetal where SampleVNF image is deployed.

	Modify networks/phy_port accordingly to the baremetal setup.

	Run test from:

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
{% set framesize = framesize or "{64B: 100}" %}

schema: yardstick:task:0.1
scenarios:
- type: NSPerf
 traffic_profile: ../../traffic_profiles/ipv4_throughput.yaml
 topology: acl-tg-topology.yaml
 nodes:
 tg__0: trafficgen_0.yardstick
 vnf__0: vnf_0.yardstick
 options:
 framesize:
 uplink: {{ framesize }}
 downlink: {{ framesize }}
 flow:
 src_ip: [{'tg__0': 'xe0'}]
 dst_ip: [{'tg__0': 'xe1'}]
 count: 1
 traffic_type: 4
 rfc2544:
 allowed_drop_rate: 0.0001 - 0.0001
 vnf__0:
 rules: acl_1rule.yaml
 vnf_config: {lb_config: 'SW', lb_count: 1, worker_config: '1C/1T', worker_threads: 1}
 runner:
 type: Iteration
 iterations: 10
 interval: 35
contexts:
 - name: yardstick
 type: Node
 file: /etc/yardstick/nodes/standalone/trex_bm.yaml
 - type: StandaloneOvsDpdk
 name: yardstick
 file: /etc/yardstick/nodes/standalone/host_ovs.yaml
 vm_deploy: True
 ovs_properties:
 version:
 ovs: 2.7.0
 dpdk: 16.11.1
 pmd_threads: 2
 ram:
 socket_0: 2048
 socket_1: 2048
 queues: 4
 lcore_mask: ""
 pmd_cpu_mask: "0x6"
 vpath: "/usr/local"

 flavor:
 images: "/var/lib/libvirt/images/yardstick-nsb-image.img"
 ram: 16384
 extra_specs:
 hw:cpu_sockets: 1
 hw:cpu_cores: 6
 hw:cpu_threads: 2
 user: ""
 password: ""
 servers:
 vnf_0:
 network_ports:
 mgmt:
 cidr: '1.1.1.7/24'
 xe0:
 - uplink_0
 xe1:
 - downlink_0
 networks:
 uplink_0:
 port_num: 0
 phy_port: "0000:05:00.0"
 vpci: "0000:00:07.0"
 cidr: '152.16.100.10/24'
 gateway_ip: '152.16.100.20'
 downlink_0:
 port_num: 1
 phy_port: "0000:05:00.1"
 vpci: "0000:00:08.0"
 cidr: '152.16.40.10/24'
 gateway_ip: '152.16.100.20'

2.13.8. Preparing test run of vEPC test case

Provided vEPC test cases are examples of emulation of vEPC infrastructure
components, such as UE, eNodeB, MME, SGW, PGW.

Location of vEPC test cases: samples/vnf_samples/nsut/vepc/.

Before running a specific vEPC test case using NSB, some preconfiguration
needs to be done.

2.14. Update Spirent Landslide TG configuration in pod file

Examples of pod.yaml files could be found in
etc/yardstick/nodes/standalone.
The name of related pod file could be checked in the context section of NSB
test case.

The pod.yaml related to vEPC test case uses some sub-structures that hold the
details of accessing the Spirent Landslide traffic generator.
These subsections and the changes to be done in provided example pod file are
described below.

1. tas_manager: data under this key holds the information required to
access Landslide TAS (Test Administration Server) and perform needed
configurations on it.

	ip: IP address of TAS Manager node; should be updated according to test
setup used

	super_user: superuser name; could be retrieved from Landslide documentation

	super_user_password: superuser password; could be retrieved from
Landslide documentation

	cfguser_password: password of predefined user named ‘cfguser’; default
password could be retrieved from Landslide documentation

	test_user: username to be used during test run as a Landslide library
name; to be defined by test run operator

	test_user_password: password of test user; to be defined by test run
operator

	proto: http or https; to be defined by test run operator

	license: Landslide license number installed on TAS

2. The config section holds information about test servers (TSs) and
systems under test (SUTs). Data is represented as a list of entries.
Each such entry contains:

	test_server: this subsection represents data related to test server
configuration, such as:

	name: test server name; unique custom name to be defined by test
operator

	role: this value is used as a key to bind specific Test Server and
TestCase; should be set to one of test types supported by TAS license

	ip: Test Server IP address

	thread_model: parameter related to Test Server performance mode.
The value should be one of the following: “Legacy” | “Max” | “Fireball”.
Refer to Landslide documentation for details.

	phySubnets: a structure used to specify IP ranges reservations on
specific network interfaces of related Test Server. Structure fields are:

	base: start of IP address range

	mask: IP range mask in CIDR format

	name: network interface name, e.g. eth1

	numIps: size of IP address range

	preResolvedArpAddress: a structure used to specify the range of IP
addresses for which the ARP responses will be emulated

	StartingAddress: IP address specifying the start of IP address range

	NumNodes: size of the IP address range

	suts: a structure that contains definitions of each specific SUT
(represents a vEPC component). SUT structure contains following key/value
pairs:

	name: unique custom string specifying SUT name

	role: string value corresponding with an SUT role specified in the
session profile (test session template) file

	managementIp: SUT management IP adress

	phy: network interface name, e.g. eth1

	ip: vEPC component IP address used in test case topology

	nextHop: next hop IP address, to allow for vEPC inter-node communication

2.15. Update NSB test case definitions

NSB test case file designated for vEPC testing contains an example of specific
test scenario configuration.
Test operator may change these definitions as required for the use case that
requires testing.
Specifically, following subsections of the vEPC test case (section scenarios)
may be changed.

	Subsection options: contains custom parameters used for vEPC testing

	subsection dmf: may contain one or more parameters specified in
traffic_profile template file

	subsection test_cases: contains re-definitions of parameters specified
in session_profile template file

Note

All parameters in session_profile, value of which is a
placeholder, needs to be re-defined to construct a valid test session.

2. Subsection runner: specifies the test duration and the interval of
TG and VNF side KPIs polling. For more details, refer to Architecture.

2.15.1. Preparing test run of vPE test case

The vPE (Provider Edge Router) is a :term: VNF approximation
serving as an Edge Router. The vPE is approximated using the
ip_pipeline dpdk application.

[image: NSB vPE Diagram]

The vpe_config file must be passed as it is not auto generated.
The vpe_script defines the rules applied to each of the pipelines. This can be
auto generated or a file can be passed using the script_file option in
vnf_config as shown below. The full_tm_profile_file option must be
used if a traffic manager is defined in vpe_config.

vnf_config: { file: './vpe_config/vpe_config_2_ports',
 action_bulk_file: './vpe_config/action_bulk_512.txt',
 full_tm_profile_file: './vpe_config/full_tm_profile_10G.cfg',
 script_file: './vpe_config/vpe_script_sample' }

Testcases for vPE can be found in the vnf_samples/nsut/vpe directory.
A testcase can be started with the following command as an example:

yardstick task start /yardstick/samples/vnf_samples/nsut/vpe/tc_baremetal_rfc2544_ipv4_1flow_64B_ixia.yaml

2.15.2. Preparing test run of vIPSEC test case

Location of vIPSEC test cases: samples/vnf_samples/nsut/ipsec/.

Before running a specific vIPSEC test case using NSB, some dependencies have to be
preinstalled and properly configured.
- VPP

export UBUNTU="xenial"
export RELEASE=".stable.1810"
sudo rm /etc/apt/sources.list.d/99fd.io.list
echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io$RELEASE.ubuntu.$UBUNTU.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list
sudo apt-get update
sudo apt-get install vpp vpp-lib vpp-plugin vpp-dbg vpp-dev vpp-api-java vpp-api-python vpp-api-lua

	VAT templates

VAT templates is required for the VPP API.

mkdir -p /opt/nsb_bin/vpp/templates/
echo 'exec trace add dpdk-input 50' > /opt/nsb_bin/vpp/templates/enable_dpdk_traces.vat
echo 'exec trace add vhost-user-input 50' > /opt/nsb_bin/vpp/templates/enable_vhost_user_traces.vat
echo 'exec trace add memif-input 50' > /opt/nsb_bin/vpp/templates/enable_memif_traces.vat
cat > /opt/nsb_bin/vpp/templates/dump_interfaces.vat << EOL
sw_interface_dump
dump_interface_table
quit
EOL

2.15.3. Preparing test run of vCMTS test case

Location of vCMTS test cases: samples/vnf_samples/nsut/cmts/.

Before running a specific vIPSEC test case using NSB, some changes must be
made to the original vCMTS package.

2.15.3.1. Allow SSH access to the docker images

Follow the documentation at https://docs.docker.com/engine/examples/running_ssh_service/
to allow SSH access to the Pktgen/vcmts-d containers located at:

	$VCMTS_ROOT/pktgen/docker/docker-image-pktgen/Dockerfile and

	$VCMTS_ROOT/vcmtsd/docker/docker-image-vcmtsd/Dockerfile

2.15.3.2. Deploy the ConfigMaps for Pktgen and vCMTSd

cd $VCMTS_ROOT/kubernetes/helm/pktgen
helm template . -x templates/pktgen-configmap.yaml > configmap.yaml
kubectl create -f configmap.yaml

cd $VCMTS_ROOT/kubernetes/helm/vcmtsd
helm template . -x templates/vcmts-configmap.yaml > configmap.yaml
kubectl create -f configmap.yaml

2.16. Yardstick Test Cases

2.16.1. Abstract

This chapter lists available Yardstick test cases.
Yardstick test cases are divided in two main categories:

	Generic NFVI Test Cases - Test Cases developed to realize the methodology
described in Methodology

	OPNFV Feature Test Cases - Test Cases developed to verify one or more
aspect of a feature delivered by an OPNFV Project.

2.16.2. Generic NFVI Test Case Descriptions

	2.16.2.1. Yardstick Test Case Description TC001

	2.16.2.2. Yardstick Test Case Description TC002

	2.16.2.3. Yardstick Test Case Description TC004

	2.16.2.4. Yardstick Test Case Description TC005

	2.16.2.5. Yardstick Test Case Description TC006

	2.16.2.6. Yardstick Test Case Description TC008

	2.16.2.7. Yardstick Test Case Description TC009

	2.16.2.8. Yardstick Test Case Description TC010

	2.16.2.9. Yardstick Test Case Description TC011

	2.16.2.10. Yardstick Test Case Description TC012

	2.16.2.11. Yardstick Test Case Description TC014

	2.16.2.12. Yardstick Test Case Description TC015

	2.16.2.13. Yardstick Test Case Description TC024

	2.16.2.14. Yardstick Test Case Description TC037

	2.16.2.15. Yardstick Test Case Description TC038

	2.16.2.16. Yardstick Test Case Description TC042

	2.16.2.17. Yardstick Test Case Description TC043

	2.16.2.18. Yardstick Test Case Description TC044

	2.16.2.19. Yardstick Test Case Description TC055

	2.16.2.20. Yardstick Test Case Description TC061

	2.16.2.21. Yardstick Test Case Description TC063

	2.16.2.22. Yardstick Test Case Description TC069

	2.16.2.23. Yardstick Test Case Description TC070

	2.16.2.24. Yardstick Test Case Description TC071

	2.16.2.25. Yardstick Test Case Description TC072

	2.16.2.26. Yardstick Test Case Description TC073

	2.16.2.27. Yardstick Test Case Description TC074

	2.16.2.28. Yardstick Test Case Description TC075

	2.16.2.29. Yardstick Test Case Description TC076

	2.16.2.30. Yardstick Test Case Description TC078

	2.16.2.31. Yardstick Test Case Description TC079

	2.16.2.32. Yardstick Test Case Description TC080

	2.16.2.33. Yardstick Test Case Description TC081

	2.16.2.34. Yardstick Test Case Description TC083

	2.16.2.35. Yardstick Test Case Description TC084

2.16.3. OPNFV Feature Test Cases

2.16.3.1. H A

	2.16.3.1.1. Yardstick Test Case Description TC019

	2.16.3.1.2. Yardstick Test Case Description TC025

	2.16.3.1.3. Yardstick Test Case Description TC045

	2.16.3.1.4. Yardstick Test Case Description TC046

	2.16.3.1.5. Yardstick Test Case Description TC047

	2.16.3.1.6. Yardstick Test Case Description TC048

	2.16.3.1.7. Yardstick Test Case Description TC049

	2.16.3.1.8. Yardstick Test Case Description TC050

	2.16.3.1.9. Yardstick Test Case Description TC051

	2.16.3.1.10. Yardstick Test Case Description TC052

	2.16.3.1.11. Yardstick Test Case Description TC053

	2.16.3.1.12. Yardstick Test Case Description TC054

	2.16.3.1.13. Yardstick Test Case Description TC056

	2.16.3.1.14. Yardstick Test Case Description TC057

	2.16.3.1.15. Yardstick Test Case Description TC058

	2.16.3.1.16. Yardstick Test Case Description TC087

	2.16.3.1.17. Yardstick Test Case Description TC088

	2.16.3.1.18. Yardstick Test Case Description TC089

	2.16.3.1.19. Yardstick Test Case Description TC090

	2.16.3.1.20. Yardstick Test Case Description TC091

	2.16.3.1.21. Yardstick Test Case Description TC092

	2.16.3.1.22. Yardstick Test Case Description TC093

2.16.3.2. IPv6

	2.16.3.2.1. Yardstick Test Case Description TC027

2.16.3.3. KVM

	2.16.3.3.1. Yardstick Test Case Description TC028

2.16.3.4. Parser

	2.16.3.4.1. Yardstick Test Case Description TC040

2.16.3.5. StorPerf

	2.16.2.27. Yardstick Test Case Description TC074

2.16.4. Templates

	2.16.4.1. Yardstick Test Case Description TCXXX

	2.16.4.2. Task Template Syntax

2.16.2.1. Yardstick Test Case Description TC001

	Network Performance

	test case id

	OPNFV_YARDSTICK_TC001_NETWORK PERFORMANCE

	metric

	Number of flows and throughput

	test purpose

	The purpose of TC001 is to evaluate the IaaS network
performance with regards to flows and throughput, such as if
and how different amounts of flows matter for the throughput
between hosts on different compute blades. Typically e.g.
the performance of a vSwitch depends on the number of flows
running through it. Also performance of other equipment or
entities can depend on the number of flows or the packet
sizes used.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	pktgen

Linux packet generator is a tool to generate packets at very
high speed in the kernel. pktgen is mainly used to drive and
LAN equipment test network. pktgen supports multi threading.
To generate random MAC address, IP address, port number UDP
packets, pktgen uses multiple CPU processors in the
different PCI bus (PCI, PCIe bus) with Gigabit Ethernet
tested (pktgen performance depends on the CPU processing
speed, memory delay, PCI bus speed hardware parameters),
Transmit data rate can be even larger than 10GBit/s. Visible
can satisfy most card test requirements.

(Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Docker
image.
As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

	test
description

	This test case uses Pktgen to generate packet flow between
two hosts for simulating network workloads on the SUT.

	traffic
profile

	An IP table is setup on server to monitor for received
packets.

	configuration

	file: opnfv_yardstick_tc001.yaml

Packet size is set to 60 bytes.
Number of ports: 10, 50, 100, 500 and 1000, where each
runs for 20 seconds. The whole sequence is run twice
The client and server are distributed on different hardware.

For SLA max_ppm is set to 1000. The amount of configured
ports map to between 110 up to 1001000 flows, respectively.

	applicability

	Test can be configured with different:

	packet sizes;

	amount of flows;

	test duration.

Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to loose, not received.

	usability

	This test case is used for generating high network
throughput to simulate certain workloads on the SUT. Hence
it should work with other test cases.

	references

	pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two host VMs are booted, as server and client.

	step 2

	Yardstick is connected with the server VM by using ssh.
‘pktgen_benchmark’ bash script is copyied from Jump Host to
the server VM via the ssh tunnel.

	step 3

	An IP table is setup on server to monitor for received
packets.

	step 4

	pktgen is invoked to generate packet flow between two server
and client for simulating network workloads on the SUT.
Results are processed and checked against the SLA. Logs are
produced and stored.

Result: Logs are stored.

	step 5

	Two host VMs are deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.2. Yardstick Test Case Description TC002

	Network Latency

	test case id

	OPNFV_YARDSTICK_TC002_NETWORK LATENCY

	metric

	RTT (Round Trip Time)

	test purpose

	The purpose of TC002 is to do a basic verification that
network latency is within acceptable boundaries when packets
travel between hosts located on same or different compute
blades.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	ping

Ping is a computer network administration software utility
used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time for
packet sent from the originating host to a destination
computer that are echoed back to the source.

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Docker image.
(For example also a Cirros image can be downloaded from
cirros-image [https://download.cirros-cloud.net], it includes ping)

	test topology

	Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from host VM to target VM(s) to elicit
ICMP ECHO_RESPONSE.

For one host VM there can be multiple target VMs.
Host VM and target VM(s) can be on same or different compute
blades.

	configuration

	file: opnfv_yardstick_tc002.yaml

Packet size 100 bytes. Test duration 60 seconds.
One ping each 10 seconds. Test is iterated two times.
SLA RTT is set to maximum 10 ms.

	applicability

	This test case can be configured with different:

	packet sizes;

	burst sizes;

	ping intervals;

	test durations;

	test iterations.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also normal
to achieve in balanced L2 environments. However, to cover
most configurations, both bare metal and fully virtualized
ones, this value should be possible to achieve and
acceptable for black box testing. Many real time
applications start to suffer badly if the RTT time is higher
than this. Some may suffer bad also close to this RTT, while
others may not suffer at all. It is a compromise that may
have to be tuned for different configuration purposes.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	Ping [https://linux.die.net/man/8/ping]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image (cirros-image) needs to be installed
into Glance with ping included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two host VMs are booted, as server and client.

	step 2

	Yardstick is connected with the server VM by using ssh.
‘ping_benchmark’ bash script is copied from Jump Host to the
server VM via the ssh tunnel.

	step 3

	Ping is invoked. Ping packets are sent from server VM to
client VM. RTT results are calculated and checked against
the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 4

	Two host VMs are deleted.

	test verdict

	Test should not PASS if any RTT is above the optional SLA
value, or if there is a test case execution problem.

2.16.2.3. Yardstick Test Case Description TC004

	Cache Utilization

	test case id

	OPNFV_YARDSTICK_TC004_CACHE Utilization

	metric

	cache hit, cache miss, hit/miss ratio, buffer size and page
cache size

	test purpose

	The purpose of TC004 is to evaluate the IaaS compute
capability with regards to cache utilization.This test case
should be run in parallel with other Yardstick test cases
and not run as a stand-alone test case.

This test case measures cache usage statistics, including
cache hit, cache miss, hit ratio, buffer cache size and page
cache size, with some wokloads runing on the infrastructure.
Both average and maximun values are collected.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	cachestat

cachestat is a tool using Linux ftrace capabilities for
showing Linux page cache hit/miss statistics.

(cachestat is not always part of a Linux distribution, hence
it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with cachestat included.)

	test
description

	cachestat test is invoked in a host VM on a compute blade,
cachestat test requires some other test cases running in the
host to stimulate workload.

	configuration

	File: cachestat.yaml (in the ‘samples’ directory)

Interval is set 1. Test repeat, pausing every 1 seconds
in-between.
Test durarion is set to 60 seconds.

SLA is not available in this test case.

	applicability

	Test can be configured with different:

	interval;

	runner Duration.

Default values exist.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	cachestat [https://github.com/brendangregg/perf-tools/tree/master/fs]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with cachestat included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with cachestat installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
‘cache_stat’ bash script is copyied from Jump Host to
the server VM via the ssh tunnel.

	step 3

	‘cache_stat’ script is invoked. Raw cache usage statistics
are collected and filtrated. Average and maximum values are
calculated and recorded. Logs are produced and stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	None. Cache utilization results are collected and stored.

2.16.2.4. Yardstick Test Case Description TC005

	Storage Performance

	test case id

	OPNFV_YARDSTICK_TC005_STORAGE PERFORMANCE

	metric

	IOPS (Average IOs performed per second),
Throughput (Average disk read/write bandwidth rate),
Latency (Average disk read/write latency)

	test purpose

	The purpose of TC005 is to evaluate the IaaS storage
performance with regards to IOPS, throughput and latency.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	fio

fio is an I/O tool meant to be used both for benchmark and
stress/hardware verification. It has support for 19
different types of I/O engines (sync, mmap, libaio,
posixaio, SG v3, splice, null, network, syslet, guasi,
solarisaio, and more), I/O priorities (for newer Linux
kernels), rate I/O, forked or threaded jobs, and much more.

(fio is not always part of a Linux distribution, hence it
needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with fio included.)

	test
description

	fio test is invoked in a host VM on a compute blade, a job
file as well as parameters are passed to fio and fio will
start doing what the job file tells it to do.

	configuration

	file: opnfv_yardstick_tc005.yaml

IO types is set to read, write, randwrite, randread, rw.
IO block size is set to 4KB, 64KB, 1024KB.
fio is run for each IO type and IO block size scheme,
each iteration runs for 30 seconds (10 for ramp time, 20 for
runtime).

For SLA, minimum read/write iops is set to 100,
minimum read/write throughput is set to 400 KB/s,
and maximum read/write latency is set to 20000 usec.

	applicability

	This test case can be configured with different:

	IO types;

	IO block size;

	IO depth;

	ramp time;

	test duration.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably higher throughput and lower latency
are expected. However, to cover most configurations, both
baremetal and fully virtualized ones, this value should be
possible to achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read/write bandwidths are lower than this.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	fio [http://bluestop.org/files/fio/HOWTO.txt]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with fio included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with fio installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
‘fio_benchmark’ bash script is copyied from Jump Host to
the host VM via the ssh tunnel.

	step 3

	‘fio_benchmark’ script is invoked. Simulated IO operations
are started. IOPS, disk read/write bandwidth and latency are
recorded and checked against the SLA. Logs are produced and
stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.5. Yardstick Test Case Description TC006

	Volume storage Performance

	test case id

	OPNFV_YARDSTICK_TC006_VOLUME STORAGE PERFORMANCE

	metric

	IOPS (Average IOs performed per second),
Throughput (Average disk read/write bandwidth rate),
Latency (Average disk read/write latency)

	test purpose

	The purpose of TC006 is to evaluate the IaaS volume storage
performance with regards to IOPS, throughput and latency.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	fio

fio is an I/O tool meant to be used both for benchmark and
stress/hardware verification. It has support for 19
different types of I/O engines (sync, mmap, libaio,
posixaio, SG v3, splice, null, network, syslet, guasi,
solarisaio, and more), I/O priorities (for newer Linux
kernels), rate I/O, forked or threaded jobs, and much more.

(fio is not always part of a Linux distribution, hence it
needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with fio included.)

	test
description

	fio test is invoked in a host VM with a volume attached on a
compute blade, a job file as well as parameters are passed
to fio and fio will start doing what the job file tells it
to do.

	configuration

	file: opnfv_yardstick_tc006.yaml

Fio job file is provided to define the benchmark process
Target volume is mounted at /FIO_Test directory

For SLA, minimum read/write iops is set to 100,
minimum read/write throughput is set to 400 KB/s,
and maximum read/write latency is set to 20000 usec.

	applicability

	This test case can be configured with different:

	Job file;

	Volume mount directory.

SLA is optional. The SLA in this test case serves as an
example. Considerably higher throughput and lower latency
are expected. However, to cover most configurations, both
baremetal and fully virtualized ones, this value should be
possible to achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read/write bandwidths are lower than this.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	fio [http://bluestop.org/files/fio/HOWTO.txt]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with fio included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with fio installed is booted.
A 200G volume is attached to the host VM

	step 2

	Yardstick is connected with the host VM by using ssh.
‘job_file.ini’ is copyied from Jump Host to the host VM via
the ssh tunnel. The attached volume is formated and mounted.

	step 3

	Fio benchmark is invoked. Simulated IO operations are
started. IOPS, disk read/write bandwidth and latency are
recorded and checked against the SLA. Logs are produced and
stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.6. Yardstick Test Case Description TC008

	Packet Loss Extended Test

	test case id

	OPNFV_YARDSTICK_TC008_NW PERF, Packet loss Extended Test

	metric

	Number of flows, packet size and throughput

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of packet sizes and flows matter for the throughput between
VMs on different compute blades. Typically e.g. the
performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends. Test results,
graphs ans similar shall be stored for comparison reasons and
product evolution understanding between different OPNFV
versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc008.yaml

Packet size: 64, 128, 256, 512, 1024, 1280 and 1518 bytes.

Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of
configured ports map from 2 up to 1001000 flows,
respectively. Each packet_size/port_amount combination is run
ten times, for 20 seconds each. Then the next
packet_size/port_amount combination is run, and so on.

The client and server are distributed on different HW.

For SLA max_ppm is set to 1000.

	test tool

	pktgen

(Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Docker
image.
As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

	references

	pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to loose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.7. Yardstick Test Case Description TC009

	Packet Loss

	test case id

	OPNFV_YARDSTICK_TC009_NW PERF, Packet loss

	metric

	Number of flows, packets lost and throughput

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of flows matter for the throughput between VMs on different
compute blades.
Typically e.g. the performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends. Test results,
graphs ans similar shall be stored for comparison reasons and
product evolution understanding between different OPNFV
versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc009.yaml

Packet size: 64 bytes

Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of
configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run ten times, for 20
seconds each. Then the next port_amount is run, and so on.

The client and server are distributed on different HW.

For SLA max_ppm is set to 1000.

	test tool

	pktgen

(Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Docker
image.
As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

	references

	pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to loose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.8. Yardstick Test Case Description TC010

	Memory Latency

	test case id

	OPNFV_YARDSTICK_TC010_MEMORY LATENCY

	metric

	Memory read latency (nanoseconds)

	test purpose

	The purpose of TC010 is to evaluate the IaaS compute
performance with regards to memory read latency.
It measures the memory read latency for varying memory sizes
and strides. Whole memory hierarchy is measured.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	Lmbench

Lmbench is a suite of operating system microbenchmarks. This
test uses lat_mem_rd tool from that suite including:

	Context switching

	Networking: connection establishment, pipe, TCP, UDP, and
RPC hot potato

	File system creates and deletes

	Process creation

	Signal handling

	System call overhead

	Memory read latency

(LMbench is not always part of a Linux distribution, hence
it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with LMbench included.)

	test
description

	LMbench lat_mem_rd benchmark measures memory read latency
for varying memory sizes and strides.

The benchmark runs as two nested loops. The outer loop is
the stride size. The inner loop is the array size. For each
array size, the benchmark creates a ring of pointers that
point backward one stride. Traversing the array is done by:

p = (char **)*p;

in a for loop (the over head of the for loop is not
significant; the loop is an unrolled loop 100 loads long).
The size of the array varies from 512 bytes to (typically)
eight megabytes. For the small sizes, the cache will have an
effect, and the loads will be much faster. This becomes much
more apparent when the data is plotted.

Only data accesses are measured; the instruction cache is
not measured.

The results are reported in nanoseconds per load and have
been verified accurate to within a few nanoseconds on an SGI
Indy.

	configuration

	File: opnfv_yardstick_tc010.yaml

	SLA (max_latency): 30 nanoseconds

	Stride - 128 bytes

	Stop size - 64 megabytes

	Iterations: 10 - test is run 10 times iteratively.

	Interval: 1 - there is 1 second delay between each
iteration.

SLA is optional. The SLA in this test case serves as an
example. Considerably lower read latency is expected.
However, to cover most configurations, both baremetal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read latency is higher than this.

	applicability

	Test can be configured with different:

	strides;

	stop_size;

	iterations and intervals.

Default values exist.

SLA (optional) : max_latency: The maximum memory latency
that is accepted.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	LMbench lat_mem_rd [http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with Lmbench included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The host is installed as client. LMbench’s lat_mem_rd tool
is invoked and logs are produced and stored.

Result: logs are stored.

	step 1

	A host VM with LMbench installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
‘lmbench_latency_benchmark’ bash script is copyied from Jump
Host to the host VM via the ssh tunnel.

	step 3

	‘lmbench_latency_benchmark’ script is invoked. LMbench’s
lat_mem_rd benchmark starts to measures memory read latency
for varying memory sizes and strides. Memory read latency
are recorded and checked against the SLA. Logs are produced
and stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Test fails if the measured memory latency is above the SLA
value or if there is a test case execution problem.

2.16.2.9. Yardstick Test Case Description TC011

	Packet delay variation between VMs

	test case id

	OPNFV_YARDSTICK_TC011_PACKET DELAY VARIATION BETWEEN VMs

	metric

	jitter: packet delay variation (ms)

	test purpose

	The purpose of TC011 is to evaluate the IaaS network
performance with regards to network jitter (packet delay
variation).
It measures the packet delay variation sending the packets
from one VM to the other.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	iperf3

iPerf3 is a tool for active measurements of the maximum
achievable bandwidth on IP networks. It supports tuning of
various parameters related to timing, buffers and protocols.
The UDP protocols can be used to measure jitter delay.

(iperf3 is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ directory for
how to generate a Linux image with pktgen included.)

	test
description

	iperf3 test is invoked between a host VM and a target VM.

Jitter calculations are continuously computed by the server,
as specified by RTP in RFC 1889. The client records a 64 bit
second/microsecond timestamp in the packet. The server
computes the relative transit time as (server’s receive time
- client’s send time). The client’s and server’s clocks do
not need to be synchronized; any difference is subtracted
outin the jitter calculation. Jitter is the smoothed mean of
differences between consecutive transit times.

	configuration

	File: opnfv_yardstick_tc011.yaml

	options:
protocol: udp # The protocol used by iperf3 tools
Send the given number of packets without pausing:
bandwidth: 20m

	runner:
duration: 30 # Total test duration 30 seconds.

	SLA (optional):
jitter: 10 (ms) # The maximum amount of jitter that is
accepted.

	applicability

	Test can be configured with different:

	
	bandwidth: Test case can be configured with different
	bandwidth.

	duration: The test duration can be configured.

	
	jitter: SLA is optional. The SLA in this test case
	serves as an example.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	iperf3 [https://iperf.fr/]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with iperf3 included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two host VMs with iperf3 installed are booted, as server and
client.

	step 2

	Yardstick is connected with the host VM by using ssh.
A iperf3 server is started on the server VM via the ssh
tunnel.

	step 3

	iperf3 benchmark is invoked. Jitter is calculated and check
against the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 4

	The host VMs are deleted.

	test verdict

	Test should not PASS if any jitter is above the optional SLA
value, or if there is a test case execution problem.

2.16.2.10. Yardstick Test Case Description TC012

	Memory Bandwidth

	test case id

	OPNFV_YARDSTICK_TC012_MEMORY BANDWIDTH

	metric

	Memory read/write bandwidth (MBps)

	test purpose

	The purpose of TC012 is to evaluate the IaaS compute
performance with regards to memory throughput.
It measures the rate at which data can be read from and
written to the memory (this includes all levels of memory).

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	LMbench

LMbench is a suite of operating system microbenchmarks.
This test uses bw_mem tool from that suite including:

	Cached file read

	Memory copy (bcopy)

	Memory read

	Memory write

	Pipe

	TCP

(LMbench is not always part of a Linux distribution, hence
it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with LMbench included.)

	test
description

	LMbench bw_mem benchmark allocates twice the specified
amount of memory, zeros it, and then times the copying of
the first half to the second half. The benchmark is invoked
in a host VM on a compute blade. Results are reported in
megabytes moved per second.

	configuration

	File: opnfv_yardstick_tc012.yaml

	SLA (optional): 15000 (MBps) min_bw: The minimum amount of
memory bandwidth that is accepted.

	Size: 10 240 kB - test allocates twice that size
(20 480kB) zeros it and then measures the time it takes to
copy from one side to another.

	Benchmark: rdwr - measures the time to read data into
memory and then write data to the same location.

	Warmup: 0 - the number of iterations to perform before
taking actual measurements.

	Iterations: 10 - test is run 10 times iteratively.

	Interval: 1 - there is 1 second delay between each
iteration.

SLA is optional. The SLA in this test case serves as an
example. Considerably higher bandwidth is expected.
However, to cover most configurations, both baremetal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read/write bandwidths are lower than this.

	applicability

	Test can be configured with different:

	memory sizes;

	memory operations (such as rd, wr, rdwr, cp, frd, fwr,
fcp, bzero, bcopy);

	number of warmup iterations;

	iterations and intervals.

Default values exist.

SLA (optional) : min_bandwidth: The minimun memory bandwidth
that is accepted.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	LMbench bw_mem [http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with Lmbench included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with LMbench installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
“lmbench_bandwidth_benchmark” bash script is copied from
Jump Host to the host VM via ssh tunnel.

	step 3

	‘lmbench_bandwidth_benchmark’ script is invoked. LMbench’s
bw_mem benchmark starts to measures memory read/write
bandwidth. Memory read/write bandwidth results are recorded
and checked against the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Test fails if the measured memory bandwidth is below the SLA
value or if there is a test case execution problem.

2.16.2.11. Yardstick Test Case Description TC014

	Processing speed

	test case id

	OPNFV_YARDSTICK_TC014_PROCESSING SPEED

	metric

	score of single cpu running,
score of parallel running

	test purpose

	The purpose of TC014 is to evaluate the IaaS compute
performance with regards to CPU processing speed.
It measures score of single cpu running and parallel
running.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	UnixBench

Unixbench is the most used CPU benchmarking software tool.
It can measure the performance of bash scripts, CPUs in
multithreading and single threading. It can also measure the
performance for parallel taks. Also, specific disk IO for
small and large files are performed. You can use it to
measure either linux dedicated servers and linux vps
servers, running CentOS, Debian, Ubuntu, Fedora and other
distros.

(UnixBench is not always part of a Linux distribution, hence
it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with UnixBench included.)

	test
description

	The UnixBench runs system benchmarks in a host VM on a
compute blade, getting information on the CPUs in the
system. If the system has more than one CPU, the tests will
be run twice – once with a single copy of each test running
at once, and once with N copies, where N is the number of
CPUs.

UnixBench will processs a set of results from a single test
by averaging the individal pass results into a single final
value.

	configuration

	file: opnfv_yardstick_tc014.yaml

run_mode: Run unixbench in quiet mode or verbose mode
test_type: dhry2reg, whetstone and so on

For SLA with single_score and parallel_score, both can be
set by user, default is NA.

	applicability

	Test can be configured with different:

	test types;

	dhry2reg;

	whetstone.

Default values exist.

SLA (optional) : min_score: The minimun UnixBench score that
is accepted.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	unixbench [https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with unixbench included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with UnixBench installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
“unixbench_benchmark” bash script is copied from Jump Host
to the host VM via ssh tunnel.

	step 3

	UnixBench is invoked. All the tests are executed using the
“Run” script in the top-level of UnixBench directory.
The “Run” script will run a standard “index” test, and save
the report in the “results” directory. Then the report is
processed by “unixbench_benchmark” and checked againsted the
SLA.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.12. Yardstick Test Case Description TC015

	Processing speed with impact on energy consumption and CPU load

	test case id

	OPNFV_YARDSTICK_TC015_PROCESSING SPEED

	metric

	score of single cpu running,
score of parallel running,
energy consumption
cpu load

	test purpose

	The purpose of TC015 is to evaluate the IaaS compute
performance with regards to CPU processing speed with
its impact on the energy consumption
It measures score of single cpu running and parallel
running. Energy consumption and cpu load are monitored while
the cpu test is running.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations,
different server types.

	test tool

	UnixBench

Unixbench is the most used CPU benchmarking software tool.
It can measure the performance of bash scripts, CPUs in
multithreading and single threading. It can also measure the
performance for parallel tasks. Also, specific disk IO for
small and large files are performed. You can use it to
measure either linux dedicated servers and linux vps
servers, running CentOS, Debian, Ubuntu, Fedora and other
distros.

(UnixBench is not always part of a Linux distribution, hence
it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with UnixBench included.)

Redfish API
This HTTPS interface is provided by BMC of every telco grade
server. Is is a standard interface.

	test
description

	The UnixBench runs system benchmarks on a compute, getting
information on the CPUs in the system. If the system has
more than one CPU, the tests will be run twice – once with
a single copy of each test running at once, and once with N
N copies, where N is the number of CPUs.

UnixBench will process a set of results from a single test
by averaging the individual pass results into a single final
value.

While the cpu test is running Energy scenario run in
background to monitor the number of watt consumed by the
compute server on the fly. The same is done using Cpuload
scenario to monitor the overall percentage of CPU used on
the fly. This enables to balance the CPU score with its
impact on energy consumption. Synchronized measurements
enables to look at any relation between CPU load and energy
consumption.

	configuration

	file: opnfv_yardstick_tc015.yaml

	run_mode:
	Run Energy and Cpuload in background
Run unixbench in quiet mode or verbose mode
test_type: dhry2reg, whetstone and so on

Duration and Interval are set globally for Energy and
Cpuload, aligned with duration of UnixBench test.
SLA can be set for each scenario type. Default is NA.
For SLA with single_score and parallel_score, both can be
set by user, default is NA.

	applicability

	Test shall be applied to node context only
It can be configured with different:

	test types: dhry2reg, whetstone

Default values exist.

SLA (optional) : min_score: The minimun UnixBench score that
is accepted.

	usability

	This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

	references

	unixbench [https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench]

ETSI-NFV-TST001

	pre-test
conditions

	The target shall have unixbench installed on it.

	test sequence

	description and expected result

	step 1

	Yardstick is connected with the target node using ssh.

	step 2

	Energy and Cpuload are launched silently in background one
after the other.
Then UnixBench is invoked. All the tests are executed using
the “Run” script in the top-level of UnixBench directory.
The “Run” script will run a standard “index” test, and save
the report in the “results” directory. Then the report is
processed by “unixbench_benchmark” and checked against the
SLA.
While unibench runs energy and cpu load are catched
periodically according to interval value.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.13. Yardstick Test Case Description TC024

	CPU Load

	test case id

	OPNFV_YARDSTICK_TC024_CPU Load

	metric

	CPU load

	test purpose

	To evaluate the CPU load performance of the IaaS. This test
case should be run in parallel to other Yardstick test cases
and not run as a stand-alone test case.
Average, minimum and maximun values are obtained.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	file: cpuload.yaml (in the ‘samples’ directory)

	interval: 1 - repeat, pausing every 1 seconds in-between.

	count: 10 - display statistics 10 times, then exit.

	test tool

	mpstat

(mpstat is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image. However, if mpstat is not present the TC instead uses
/proc/stats as source to produce “mpstat” output.

	references

	man-pages [http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html]

	applicability

	Test can be configured with different:

	interval;

	count;

	runner Iteration and intervals.

There are default values for each above-mentioned option.
Run in background with other test cases.

	pre-test
conditions

	The test case image needs to be installed into Glance
with mpstat included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The host is installed. The related TC, or TCs, is
invoked and mpstat logs are produced and stored.

Result: Stored logs

	test verdict

	None. CPU load results are fetched and stored.

2.16.2.14. Yardstick Test Case Description TC037

	Latency, CPU Load, Throughput, Packet Loss

	test case id

	OPNFV_YARDSTICK_TC037_LATENCY,CPU LOAD,THROUGHPUT,
PACKET LOSS

	metric

	Number of flows, latency, throughput, packet loss
CPU utilization percentage, CPU interrupt per second

	test purpose

	The purpose of TC037 is to evaluate the IaaS compute
capacity and network performance with regards to CPU
utilization, packet flows and network throughput, such as if
and how different amounts of flows matter for the throughput
between hosts on different compute blades, and the CPU load
variation.

Typically e.g. the performance of a vSwitch depends on the
number of flows running through it. Also performance of
other equipment or entities can depend on the number of
flows or the packet sizes used

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	Ping, Pktgen, mpstat

Ping is a computer network administration software utility
used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time for
packet sent from the originating host to a destination
computer that are echoed back to the source.

Linux packet generator is a tool to generate packets at very
high speed in the kernel. pktgen is mainly used to drive and
LAN equipment test network. pktgen supports multi threading.
To generate random MAC address, IP address, port number UDP
packets, pktgen uses multiple CPU processors in the
different PCI bus (PCI, PCIe bus) with Gigabit Ethernet
tested (pktgen performance depends on the CPU processing
speed, memory delay, PCI bus speed hardware parameters),
Transmit data rate can be even larger than 10GBit/s. Visible
can satisfy most card test requirements.

The mpstat command writes to standard output activities for
each available processor, processor 0 being the first one.
Global average activities among all processors are also
reported. The mpstat command can be used both on SMP and UP
machines, but in the latter, only global average activities
will be printed.

(Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Docker image.
For example also a Cirros image can be downloaded from
cirros-image [https://download.cirros-cloud.net], it includes ping.

Pktgen and mpstat are not always part of a Linux
distribution, hence it needs to be installed. It is part of
the Yardstick Docker image.
As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen and mpstat included.)

	test
description

	This test case uses Pktgen to generate packet flow between
two hosts for simulating network workloads on the SUT.
Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from a host VM to the target VM(s) to
elicit ICMP ECHO_RESPONSE, meanwhile CPU activities are
monitored by mpstat.

	configuration

	file: opnfv_yardstick_tc037.yaml

Packet size is set to 64 bytes.
Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000.
The amount configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run two times, for 20
seconds each. Then the next port_amount is run, and so on.
During the test CPU load on both client and server, and the
network latency between the client and server are measured.
The client and server are distributed on different hardware.
mpstat monitoring interval is set to 1 second.
ping packet size is set to 100 bytes.
For SLA max_ppm is set to 1000.

	applicability

	Test can be configured with different:

	pktgen packet sizes;

	amount of flows;

	test duration;

	ping packet size;

	mpstat monitor interval.

Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to loose, not received.

	references

	Ping [https://linux.die.net/man/8/ping]

mpstat [http://www.linuxcommand.org/man_pages/mpstat1.html]

pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen, mpstat included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two host VMs are booted, as server and client.

	step 2

	Yardstick is connected with the server VM by using ssh.
‘pktgen_benchmark’, “ping_benchmark” bash script are copyied
from Jump Host to the server VM via the ssh tunnel.

	step 3

	An IP table is setup on server to monitor for received
packets.

	step 4

	pktgen is invoked to generate packet flow between two server
and client for simulating network workloads on the SUT. Ping
is invoked. Ping packets are sent from server VM to client
VM. mpstat is invoked, recording activities for each
available processor. Results are processed and checked
against the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 5

	Two host VMs are deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.15. Yardstick Test Case Description TC038

	Latency, CPU Load, Throughput, Packet Loss (Extended measurements)

	test case id

	OPNFV_YARDSTICK_TC038_Latency,CPU Load,Throughput,Packet Loss

	metric

	Number of flows, latency, throughput, CPU load, packet loss

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of flows matter for the throughput between hosts on different
compute blades. Typically e.g. the performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends. Test results,
graphs ans similar shall be stored for comparison reasons and
product evolution understanding between different OPNFV
versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc038.yaml

Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000.
The amount configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run ten times, for 20
seconds each. Then the next port_amount is run, and so on.
During the test CPU load on both client and server, and the
network latency between the client and server are measured.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

	test tool

	pktgen

(Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image.
As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

ping

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Glance image.
(For example also a cirros [https://download.cirros-cloud.net] image can be downloaded, it
includes ping)

mpstat

(Mpstat is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image.

	references

	Ping and Mpstat man pages

pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to loose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.16. Yardstick Test Case Description TC042

	Network Performance

	test case id

	OPNFV_YARDSTICK_TC042_DPDK pktgen latency measurements

	metric

	L2 Network Latency

	test purpose

	Measure L2 network latency when DPDK is enabled between hosts
on different compute blades.

	configuration

	file: opnfv_yardstick_tc042.yaml

	Packet size: 64 bytes

	SLA(max_latency): 100usec

	test tool

	DPDK [http://dpdk.org/doc/guides/index.html]
Pktgen-dpdk [https://pktgen-dpdk.readthedocs.io/en/latest/index.html]

(DPDK and Pktgen-dpdk are not part of a Linux distribution,
hence they needs to be installed.
As an example see the /yardstick/tools/ directory for how to
generate a Linux image with DPDK and pktgen-dpdk included.)

	references

	DPDK [http://dpdk.org/doc/guides/index.html]

Pktgen-dpdk [https://pktgen-dpdk.readthedocs.io/en/latest/index.html]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes. Default
values exist.

	pre-test
conditions

	The test case image needs to be installed into Glance
with DPDK and pktgen-dpdk included in it.

The NICs of compute nodes must support DPDK on POD.

And at least compute nodes setup hugepage.

If you want to achievement a hight performance result, it is
recommend to use NUAM, CPU pin, OVS and so on.

	test sequence

	description and expected result

	step 1

	The hosts are installed on different blades, as server and
client. Both server and client have three interfaces. The
first one is management such as ssh. The other two are used
by DPDK.

	step 2

	Testpmd [http://dpdk.org/doc/guides/testpmd_app_ug/index.html] is invoked with configurations to forward packets
from one DPDK port to the other on server.

	step 3

	Pktgen-dpdk is invoked with configurations as a traffic
generator and logs are produced and stored on client.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.17. Yardstick Test Case Description TC043

	Network Latency Between NFVI Nodes

	test case id

	OPNFV_YARDSTICK_TC043_LATENCY_BETWEEN_NFVI_NODES

	metric

	RTT (Round Trip Time)

	test purpose

	The purpose of TC043 is to do a basic verification that
network latency is within acceptable boundaries when packets
travel between different NFVI nodes.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	ping

Ping is a computer network administration software utility
used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time for
packet sent from the originating host to a destination
computer that are echoed back to the source.

	test topology

	Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from host node to target node to elicit
ICMP ECHO_RESPONSE.

	configuration

	file: opnfv_yardstick_tc043.yaml

Packet size 100 bytes. Total test duration 600 seconds.
One ping each 10 seconds. SLA RTT is set to maximum 10 ms.

	applicability

	This test case can be configured with different:

	packet sizes;

	burst sizes;

	ping intervals;

	test durations;

	test iterations.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also normal
to achieve in balanced L2 environments. However, to cover
most configurations, both bare metal and fully virtualized
ones, this value should be possible to achieve and
acceptable for black box testing. Many real time
applications start to suffer badly if the RTT time is higher
than this. Some may suffer bad also close to this RTT, while
others may not suffer at all. It is a compromise that may
have to be tuned for different configuration purposes.

	references

	Ping [https://linux.die.net/man/8/ping]

ETSI-NFV-TST001

	pre_test
conditions

	Each pod node must have ping included in it.

	test sequence

	description and expected result

	step 1

	Yardstick is connected with the NFVI node by using ssh.
‘ping_benchmark’ bash script is copyied from Jump Host to
the NFVI node via the ssh tunnel.

	step 2

	Ping is invoked. Ping packets are sent from server node to
client node. RTT results are calculated and checked against
the SLA. Logs are produced and stored.

Result: Logs are stored.

	test verdict

	Test should not PASS if any RTT is above the optional SLA
value, or if there is a test case execution problem.

2.16.2.18. Yardstick Test Case Description TC044

	Memory Utilization

	test case id

	OPNFV_YARDSTICK_TC044_Memory Utilization

	metric

	Memory utilization

	test purpose

	To evaluate the IaaS compute capability with regards to
memory utilization.This test case should be run in parallel
to other Yardstick test cases and not run as a stand-alone
test case.
Measure the memory usage statistics including used memory,
free memory, buffer, cache and shared memory.
Both average and maximun values are obtained.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	File: memload.yaml (in the ‘samples’ directory)

	interval: 1 - repeat, pausing every 1 seconds in-between.

	count: 10 - display statistics 10 times, then exit.

	test tool

	free

free provides information about unused and used memory and
swap space on any computer running Linux or another Unix-like
operating system.
free is normally part of a Linux distribution, hence it
doesn’t needs to be installed.

	references

	man-pages [http://manpages.ubuntu.com/manpages/xenial/en/man1/free.1.html]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	interval;

	count;

	runner Iteration and intervals.

There are default values for each above-mentioned option.
Run in background with other test cases.

	pre-test
conditions

	The test case image needs to be installed into Glance
with free included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The host is installed as client. The related TC, or TCs, is
invoked and free logs are produced and stored.

Result: logs are stored.

	test verdict

	None. Memory utilization results are fetched and stored.

2.16.2.19. Yardstick Test Case Description TC055

	Compute Capacity

	test case id

	OPNFV_YARDSTICK_TC055_Compute Capacity

	metric

	Number of cpus, number of cores, number of threads, available
memory size and total cache size.

	test purpose

	To evaluate the IaaS compute capacity with regards to
hardware specification, including number of cpus, number of
cores, number of threads, available memory size and total
cache size.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc055.yaml

There is are no additional configurations to be set for this
TC.

	test tool

	/proc/cpuinfo

this TC uses /proc/cpuinfo as source to produce compute
capacity output.

	references

	/proc/cpuinfo [http://www.linfo.org/proc_cpuinfo.html]

ETSI-NFV-TST001

	applicability

	None.

	pre-test
conditions

	No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, TC is invoked and logs are produced
and stored.

Result: Logs are stored.

	test verdict

	None. Hardware specification are fetched and stored.

2.16.2.20. Yardstick Test Case Description TC061

	Network Utilization

	test case id

	OPNFV_YARDSTICK_TC061_Network Utilization

	metric

	Network utilization

	test purpose

	To evaluate the IaaS network capability with regards to
network utilization, including Total number of packets
received per second, Total number of packets transmitted per
second, Total number of kilobytes received per second, Total
number of kilobytes transmitted per second, Number of
compressed packets received per second (for cslip etc.),
Number of compressed packets transmitted per second, Number
of multicast packets received per second, Utilization
percentage of the network interface.
This test case should be run in parallel to other Yardstick
test cases and not run as a stand-alone test case.
Measure the network usage statistics from the network devices
Average, minimum and maximun values are obtained.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	File: netutilization.yaml (in the ‘samples’ directory)

	interval: 1 - repeat, pausing every 1 seconds in-between.

	count: 1 - display statistics 1 times, then exit.

	test tool

	sar

The sar command writes to standard output the contents of
selected cumulative activity counters in the operating
system.
sar is normally part of a Linux distribution, hence it
doesn’t needs to be installed.

	references

	man-pages [http://linux.die.net/man/1/sar]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	interval;

	count;

	runner Iteration and intervals.

There are default values for each above-mentioned option.
Run in background with other test cases.

	pre-test
conditions

	The test case image needs to be installed into Glance
with sar included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result.

	step 1

	The host is installed as client. The related TC, or TCs, is
invoked and sar logs are produced and stored.

Result: logs are stored.

	test verdict

	None. Network utilization results are fetched and stored.

2.16.2.21. Yardstick Test Case Description TC063

	Storage Capacity

	test case id

	OPNFV_YARDSTICK_TC063_Storage Capacity

	metric

	Storage/disk size, block size
Disk Utilization

	test purpose

	This test case will check the parameters which could decide
several models and each model has its specified task to
measure. The test purposes are to measure disk size, block
size and disk utilization. With the test results, we could
evaluate the storage capacity of the host.

	configuration

	
file: opnfv_yardstick_tc063.yaml

	test_type: “disk_size”

	
	runner:
	type: Iteration
iterations: 1 - test is run 1 time iteratively.

	test tool

	fdisk
A command-line utility that provides disk partitioning
functions

iostat
This is a computer system monitor tool used to collect and
show operating system storage input and output statistics.

	references

	iostat [http://linux.die.net/man/1/iostat]
fdisk [http://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	test_type: “disk size”, “block size”, “disk utilization”

	
	interval: 1 - how ofter to stat disk utilization
	type: int
unit: seconds

	
	count: 15 - how many times to stat disk utilization
	type: int
unit: na

There are default values for each above-mentioned option.
Run in background with other test cases.

	pre-test
conditions

	The test case image needs to be installed into Glance

No POD specific requirements have been identified.

	test sequence

	Output the specific storage capacity of disk information as
the sequence into file.

	step 1

	The pod is available and the hosts are installed. Node5 is
used and logs are produced and stored.

Result: Logs are stored.

	test verdict

	None.

2.16.2.22. Yardstick Test Case Description TC069

	Memory Bandwidth

	test case id

	OPNFV_YARDSTICK_TC069_Memory Bandwidth

	metric

	Megabyte per second (MBps)

	test purpose

	To evaluate the IaaS compute performance with regards to
memory bandwidth.
Measure the maximum possible cache and memory performance
while reading and writing certain blocks of data (starting
from 1Kb and further in power of 2) continuously through ALU
and FPU respectively.
Measure different aspects of memory performance via
synthetic simulations. Each simulation consists of four
performances (Copy, Scale, Add, Triad).
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	File: opnfv_yardstick_tc069.yaml

	SLA (optional): 7000 (MBps) min_bandwidth: The minimum
amount of memory bandwidth that is accepted.

	type_id: 1 - runs a specified benchmark
(by an ID number):

1 -- INTmark [writing] 4 -- FLOATmark [writing]
2 -- INTmark [reading] 5 -- FLOATmark [reading]
3 -- INTmem 6 -- FLOATmem

	
	block_size: 64 Megabytes - the maximum block
	size per array.

	load: 32 Gigabytes - the amount of data load per pass.

	iterations: 5 - test is run 5 times iteratively.

	interval: 1 - there is 1 second delay between each
iteration.

	test tool

	RAMspeed

RAMspeed is a free open source command line utility to
measure cache and memory performance of computer systems.
RAMspeed is not always part of a Linux distribution, hence
it needs to be installed in the test image.

	references

	RAMspeed [http://alasir.com/software/ramspeed/]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	benchmark operations (such as INTmark [writing],
INTmark [reading], FLOATmark [writing],
FLOATmark [reading], INTmem, FLOATmem);

	block size per array;

	load per pass;

	number of batch run iterations;

	iterations and intervals.

There are default values for each above-mentioned option.

	pre-test
conditions

	The test case image needs to be installed into Glance
with RAmspeed included in the image.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The host is installed as client. RAMspeed is invoked and
logs are produced and stored.

Result: logs are stored.

	test verdict

	Test fails if the measured memory bandwidth is below the SLA
value or if there is a test case execution problem.

2.16.2.23. Yardstick Test Case Description TC070

	Latency, Memory Utilization, Throughput, Packet Loss

	test case id

	OPNFV_YARDSTICK_TC070_Latency, Memory Utilization,
Throughput,Packet Loss

	metric

	Number of flows, latency, throughput, Memory Utilization,
packet loss

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of flows matter for the throughput between hosts on different
compute blades. Typically e.g. the performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc070.yaml

Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000.
The amount configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run two times, for 20
seconds each. Then the next port_amount is run, and so on.
During the test Memory Utilization on both client and server,
and the network latency between the client and server are
measured.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

	test tool

	pktgen

Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image.
(As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

ping

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Glance image.
(For example also a cirros [https://download.cirros-cloud.net] image can be downloaded, it
includes ping)

free

free provides information about unused and used memory and
swap space on any computer running Linux or another Unix-like
operating system.
free is normally part of a Linux distribution, hence it
doesn’t needs to be installed.

	references

	Ping and free man pages

pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to lose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.24. Yardstick Test Case Description TC071

	Latency, Cache Utilization, Throughput, Packet Loss

	test case id

	OPNFV_YARDSTICK_TC071_Latency, Cache Utilization,
Throughput,Packet Loss

	metric

	Number of flows, latency, throughput, Cache Utilization,
packet loss

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of flows matter for the throughput between hosts on different
compute blades. Typically e.g. the performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc071.yaml

Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000.
The amount configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run two times, for 20
seconds each. Then the next port_amount is run, and so on.
During the test Cache Utilization on both client and server,
and the network latency between the client and server are
measured.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

	test tool

	pktgen

Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image.
(As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

ping

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Glance image.
(For example also a cirros [https://download.cirros-cloud.net] image can be downloaded, it
includes ping)

cachestat

cachestat is not always part of a Linux distribution, hence
it needs to be installed.

	references

	Ping man pages

pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

cachestat [https://github.com/brendangregg/perf-tools/tree/master/fs]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to lose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.25. Yardstick Test Case Description TC072

	Latency, Network Utilization, Throughput, Packet Loss

	test case id

	OPNFV_YARDSTICK_TC072_Latency, Network Utilization,
Throughput,Packet Loss

	metric

	Number of flows, latency, throughput, Network Utilization,
packet loss

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of flows matter for the throughput between hosts on different
compute blades. Typically e.g. the performance of a vSwitch
depends on the number of flows running through it. Also
performance of other equipment or entities can depend
on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc072.yaml

Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000.
The amount configured ports map from 2 up to 1001000 flows,
respectively. Each port amount is run two times, for 20
seconds each. Then the next port_amount is run, and so on.
During the test Network Utilization on both client and
server, and the network latency between the client and server
are measured.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

	test tool

	pktgen

Pktgen is not always part of a Linux distribution, hence it
needs to be installed. It is part of the Yardstick Glance
image.
(As an example see the /yardstick/tools/ directory for how
to generate a Linux image with pktgen included.)

ping

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Glance image.
(For example also a cirros [https://download.cirros-cloud.net] image can be downloaded, it
includes ping)

sar

The sar command writes to standard output the contents of
selected cumulative activity counters in the operating
system.
sar is normally part of a Linux distribution, hence it
doesn’t needs to be installed.

	references

	Ping and sar man pages

pktgen [https://www.kernel.org/doc/Documentation/networking/pktgen.txt]

ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes, amount
of flows and test duration. Default values exist.

SLA (optional): max_ppm: The number of packets per million
packets sent that are acceptable to lose, not received.

	pre-test
conditions

	The test case image needs to be installed into Glance
with pktgen included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The hosts are installed, as server and client. pktgen is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.26. Yardstick Test Case Description TC073

	Throughput per NFVI node test

	test case id

	OPNFV_YARDSTICK_TC073_Network latency and throughput between
nodes

	metric

	Network latency and throughput

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of packet sizes and flows matter for the throughput between
nodes in one pod.

	configuration

	file: opnfv_yardstick_tc073.yaml

Packet size: default 1024 bytes.

Test length: default 20 seconds.

The client and server are distributed on different nodes.

For SLA max_mean_latency is set to 100.

	test tool

	netperf [https://hewlettpackard.github.io/netperf/]
Netperf is a software application that provides network
bandwidth testing between two hosts on a network. It
supports Unix domain sockets, TCP, SCTP, DLPI and UDP via
BSD Sockets. Netperf provides a number of predefined tests
e.g. to measure bulk (unidirectional) data transfer or
request response performance.
(netperf is not always part of a Linux distribution, hence
it needs to be installed.)

	references

	netperf Man pages
ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes and
test duration. Default values exist.

SLA (optional): max_mean_latency

	pre-test
conditions

	The POD can be reached by external ip and logged on via ssh

	test sequence

	description and expected result

	step 1

	Install netperf tool on each specified node, one is as the
server, and the other as the client.

	step 2

	Log on to the client node and use the netperf command to
execute the network performance test

	step 3

	The throughput results stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.27. Yardstick Test Case Description TC074

	Storperf

	test case id

	OPNFV_YARDSTICK_TC074_Storperf

	metric

	Storage performance

	test purpose

	To evaluate and report on the Cinder volume performance.

This testcase integrates with OPNFV StorPerf to measure
block performance of the underlying Cinder drivers. Many
options are supported, and even the root disk (Glance
ephemeral storage can be profiled.

The fundamental concept of the test case is to first fill
the volumes with random data to ensure reported metrics
are indicative of continued usage and not skewed by
transitional performance while the underlying storage
driver allocates blocks.
The metrics for filling the volumes with random data
are not reported in the final results. The test also
ensures the volumes are performing at a consistent level
of performance by measuring metrics every minute, and
comparing the trend of the metrics over the run. By
evaluating the min and max values, as well as the slope of
the trend, it can make the determination that the metrics
are stable, and not fluctuating beyond industry standard
norms.

	configuration

	file: opnfv_yardstick_tc074.yaml

	agent_count: 1 - the number of VMs to be created

	agent_image: “Ubuntu-14.04” - image used for creating VMs

	public_network: “ext-net” - name of public network

	volume_size: 2 - cinder volume size

	block_sizes: “4096” - data block size

	queue_depths: “4” - the number of simultaneous I/Os
to perform at all times

	StorPerf_ip: “192.168.200.2”

	query_interval: 10 - state query interval

	timeout: 600 - maximum allowed job time

	test tool

	Storperf [https://wiki.opnfv.org/display/storperf/Storperf]

StorPerf is a tool to measure block and object storage
performance in an NFVI.

StorPerf is delivered as a Docker container from
https://hub.docker.com/r/opnfv/storperf-master/tags/.

The underlying tool used is FIO, and StorPerf supports
any FIO option in order to tailor the test to the exact
workload needed.

	references

	Storperf [https://wiki.opnfv.org/display/storperf/Storperf]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	agent_count

	volume_size

	block_sizes

	queue_depths

	query_interval

	timeout

	target=[device or path]
The path to either an attached storage device
(/dev/vdb, etc) or a directory path (/opt/storperf) that
will be used to execute the performance test. In the case
of a device, the entire device will be used. If not
specified, the current directory will be used.

	workload=[workload module]
If not specified, the default is to run all workloads. The
workload types are:

	rs: 100% Read, sequential data

	ws: 100% Write, sequential data

	rr: 100% Read, random access

	wr: 100% Write, random access

	rw: 70% Read / 30% write, random access

measurements.

	workloads={json maps}
This parameter supercedes the workload and calls the V2.0
API in StorPerf. It allows for greater control of the
parameters to be passed to FIO. For example, running a
random read/write with a mix of 90% read and 10% write
would be expressed as follows:
{“9010randrw”: {“rw”:”randrw”,”rwmixread”: “90”}}
Note: This must be passed in as a string, so don’t forget
to escape or otherwise properly deal with the quotes.

	report= [job_id]
Query the status of the supplied job_id and report on
metrics. If a workload is supplied, will report on only
that subset.

	availability_zone: Specify the availability zone which
the stack will use to create instances.

	volume_type:
Cinder volumes can have different types, for example
encrypted vs. not encrypted.
To be able to profile the difference between the two.

	subnet_CIDR: Specify subnet CIDR of private network

	stack_name: Specify the name of the stack that will be
created, the default: “StorperfAgentGroup”

	volume_count: Specify the number of volumes per
virtual machines

There are default values for each above-mentioned option.

	pre-test
conditions

	If you do not have an Ubuntu 14.04 image in Glance, you will
need to add one.

Storperf is required to be installed in the environment.
There are two possible methods for Storperf installation:

	Run container on Jump Host

	Run container in a VM

Running StorPerf on Jump Host
Requirements:

	Docker must be installed

	Jump Host must have access to the OpenStack Controller
API

	Jump Host must have internet connectivity for
downloading docker image

	Enough floating IPs must be available to match your
agent count

Running StorPerf in a VM
Requirements:

	VM has docker installed

	VM has OpenStack Controller credentials and can
communicate with the Controller API

	VM has internet connectivity for downloading the
docker image

	Enough floating IPs must be available to match your
agent count

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Yardstick calls StorPerf to create the heat stack with the
number of VMs and size of Cinder volumes specified. The
VMs will be on their own private subnet, and take floating
IP addresses from the specified public network.

	step 2

	Yardstick calls StorPerf to fill all the volumes with
random data.

	step 3

	Yardstick calls StorPerf to perform the series of tests
specified by the workload, queue depths and block sizes.

	step 4

	Yardstick calls StorPerf to delete the stack it created.

	test verdict

	None. Storage performance results are fetched and stored.

2.16.2.28. Yardstick Test Case Description TC075

	Network Capacity and Scale Testing

	test case id

	OPNFV_YARDSTICK_TC075_Network_Capacity_and_Scale_testing

	metric

	Number of connections, Number of frames sent/received

	test purpose

	To evaluate the network capacity and scale with regards to
connections and frmaes.

	configuration

	file: opnfv_yardstick_tc075.yaml

There is no additional configuration to be set for this TC.

	test tool

	netstar

Netstat is normally part of any Linux distribution, hence it
doesn’t need to be installed.

	references

	Netstat man page

ETSI-NFV-TST001

	applicability

	This test case is mainly for evaluating network performance.

	pre_test
conditions

	Each pod node must have netstat included in it.

	test sequence

	description and expected result

	step 1

	The pod is available.
Netstat is invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	None. Number of connections and frames are fetched and
stored.

2.16.2.29. Yardstick Test Case Description TC076

	Monitor Network Metrics

	test case id

	OPNFV_YARDSTICK_TC076_Monitor_Network_Metrics

	metric

	IP datagram error rate, ICMP message error rate,
TCP segment error rate and UDP datagram error rate

	test purpose

	The purpose of TC076 is to evaluate the IaaS network
reliability with regards to IP datagram error rate, ICMP
message error rate, TCP segment error rate and UDP datagram
error rate.

TC076 monitors network metrics provided by the Linux kernel
in a host and calculates IP datagram error rate, ICMP
message error rate, TCP segment error rate and UDP datagram
error rate.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	nstat

nstat is a simple tool to monitor kernel snmp counters and
network interface statistics.

(nstat is not always part of a Linux distribution, hence it
needs to be installed. nstat is provided by the iproute2
collection, which is usually also the name of the package in
many Linux distributions.As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with iproute2 included.)

	test
description

	Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from host VM to target VM(s) to elicit
ICMP ECHO_RESPONSE.

nstat is invoked on the target vm to monitors network
metrics provided by the Linux kernel.

	configuration

	file: opnfv_yardstick_tc076.yaml

There is no additional configuration to be set for this TC.

	references

	nstat man page

ETSI-NFV-TST001

	applicability

	This test case is mainly for monitoring network metrics.

	pre_test
conditions

	The test case image needs to be installed into Glance
with fio included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two host VMs are booted, as server and client.

	step 2

	Yardstick is connected with the server VM by using ssh.
‘ping_benchmark’ bash script is copyied from Jump Host to
the server VM via the ssh tunnel.

	step 3

	Ping is invoked. Ping packets are sent from server VM to
client VM. RTT results are calculated and checked against
the SLA. nstat is invoked on the client vm to monitors
network metrics provided by the Linux kernel. IP datagram
error rate, ICMP message error rate, TCP segment error rate
and UDP datagram error rate are calculated.
Logs are produced and stored.

Result: Logs are stored.

	step 4

	Two host VMs are deleted.

	test verdict

	None.

2.16.2.30. Yardstick Test Case Description TC078

	Compute Performance

	test case id

	OPNFV_YARDSTICK_TC078_SPEC CPU 2006

	metric

	compute-intensive performance

	test purpose

	The purpose of TC078 is to evaluate the IaaS compute
performance by using SPEC CPU 2006 benchmark. The SPEC CPU
2006 benchmark has several different ways to measure
computer performance. One way is to measure how fast the
computer completes a single task; this is called a speed
measurement. Another way is to measure how many tasks
computer can accomplish in a certain amount of time; this is
called a throughput, capacity or rate measurement.

	test tool

	SPEC CPU 2006

The SPEC CPU 2006 benchmark is SPEC’s industry-standardized,
CPU-intensive benchmark suite, stressing a system’s
processor, memory subsystem and compiler. This benchmark
suite includes the SPECint benchmarks and the SPECfp
benchmarks. The SPECint 2006 benchmark contains 12 different
enchmark tests and the SPECfp 2006 benchmark contains 19
different benchmark tests.

SPEC CPU 2006 is not always part of a Linux distribution.
SPEC requires that users purchase a license and agree with
their terms and conditions. For this test case, users must
manually download cpu2006-1.2.iso from the SPEC website and
save it under the yardstick/resources folder (e.g. /home/
opnfv/repos/yardstick/yardstick/resources/cpu2006-1.2.iso)
SPEC CPU® 2006 benchmark is available for purchase via the
SPEC order form (https://www.spec.org/order.html).

	test
description

	This test case uses SPEC CPU 2006 benchmark to measure
compute-intensive performance of hosts.

	configuration

	file: spec_cpu.yaml (in the ‘samples’ directory)

benchmark_subset is set to int.

SLA is not available in this test case.

	applicability

	Test can be configured with different:

	benchmark_subset - a subset of SPEC CPU2006 benchmarks to
run;

	SPECint_benchmark - a SPECint benchmark to run;

	SPECint_benchmark - a SPECfp benchmark to run;

	output_format - desired report format;

	runspec_config - SPEC CPU2006 config file provided to the
runspec binary;

	runspec_iterations - the number of benchmark iterations
to execute. For a reportable run, must be 3;

	runspec_tune - tuning to use (base, peak, or all). For a
reportable run, must be either base or all. Reportable
runs do base first, then (optionally) peak;

	runspec_size - size of input data to run (test, train, or
ref). Reportable runs ensure that your binaries can
produce correct results with the test and train workloads

	usability

	This test case is used for executing SPEC CPU 2006 benchmark
physical servers. The SPECint 2006 benchmark takes
approximately 5 hours.

	references

	spec_cpu2006 [https://www.spec.org/cpu2006/]

ETSI-NFV-TST001

	pre-test
conditions

	
	To run and install SPEC CPU2006, the following are required:
	
	For SPECint2006: Both C99 and C++98 compilers;

	For SPECfp2006: All three of C99, C++98 and Fortran-95
compilers;

	At least 8GB of disk space availabile on the system.

	test sequence

	description and expected result

	step 1

	cpu2006-1.2.iso has been saved under the yardstick/resources
folder (e.g. /home/opnfv/repos/yardstick/yardstick/resources
/cpu2006-1.2.iso). Additional, to use your custom runspec
config file you can save it under the yardstick/resources/
files folder and specify the config file name in the
runspec_config parameter.

	step 2

	Upload SPEC CPU2006 ISO to the target server and install
SPEC CPU2006 via ansible.

	step 3

	Yardstick is connected with the target server by using ssh.
If custom runspec config file is used, this file is copyied
from yardstick to the target server via the ssh tunnel.

	step 4

	SPEC CPU2006 benchmark is invoked and SPEC CPU 2006 metrics
are generated.

	step 5

	Text, HTML, CSV, PDF, and Configuration file outputs for the
SPEC CPU 2006 metrics are fetch from the server and stored
under /tmp/result folder.

	step 6

	uninstall SPEC CPU2006 and remove cpu2006-1.2.iso from the
target server .

	test verdict

	None. SPEC CPU2006 results are collected and stored.

2.16.2.31. Yardstick Test Case Description TC079

	Storage Performance

	test case id

	OPNFV_YARDSTICK_TC079_Bonnie++

	metric

	Sequential Input/Output and Sequential/Random Create speed
and CPU useage.

	test purpose

	The purpose of TC078 is to evaluate the IaaS storage
performance with regards to Sequential Input/Output and
Sequential/Random Create speed and CPU useage statistics.

	test tool

	Bonnie++

Bonnie++ is a disk and file system benchmarking tool for
measuring I/O performance. With Bonnie++ you can quickly and
easily produce a meaningful value to represent your current
file system performance.

Bonnie++ is not always part of a Linux distribution, hence
it needs to be installed in the test image.

	test
description

	
	This test case uses Bonnie++ to perform the tests below:
	
	Create files in sequential order

	Stat files in sequential order

	Delete files in sequential order

	Create files in random order

	Stat files in random order

	Delete files in random order

	configuration

	file: bonnie++.yaml (in the ‘samples’ directory)

file_size is set to 1024; ram_size is set to 512;
test_dir is set to ‘/tmp’; concurrency is set to 1.

SLA is not available in this test case.

	applicability

	Test can be configured with different:

	file_size - size fo the test file in MB. File size should
be double RAM for good results;

	ram_size - specify RAM size in MB to use, this is used to
reduce testing time;

	test_dir - this directory is where bonnie++ will create
the benchmark operations;

	test_user - the user who should perform the test. This is
not required if you are not running as root;

	concurrency - number of thread to perform test;

	usability

	This test case is used for executing Bonnie++ benchmark in
VMs.

	references

	bonnie++_

ETSI-NFV-TST001

	pre-test
conditions

	The Bonnie++ distribution includes a ‘bon_csv2html’ Perl
script, which takes the comma-separated values reported by
Bonnie++ and generates an HTML page displaying them.
To use this feature, bonnie++ is required to be install with
yardstick (e.g. in yardstick docker).

	test sequence

	description and expected result

	step 1

	A host VM with fio installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.

	step 3

	Bonnie++ benchmark is invoked. Simulated IO operations are
started. Logs are produced and stored.

Result: Logs are stored.

	step 4

	An HTML report is generated using bonnie++ benchmark results
and stored under /tmp/bonnie.html.

	step 5

	The host VM is deleted.

	test verdict

	None. Bonnie++ html report is generated.

2.16.2.32. Yardstick Test Case Description TC080

	Network Latency

	test case id

	OPNFV_YARDSTICK_TC080_NETWORK_LATENCY_BETWEEN_CONTAINER

	metric

	RTT (Round Trip Time)

	test purpose

	The purpose of TC080 is to do a basic verification that
network latency is within acceptable boundaries when packets
travel between containers located in two different
Kubernetes pods.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	ping

Ping is a computer network administration software utility
used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time for
packet sent from the originating host to a destination
computer that are echoed back to the source.

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Docker image.

	test topology

	Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from host container to target container
to elicit ICMP ECHO_RESPONSE.

	configuration

	file: opnfv_yardstick_tc080.yaml

Packet size 200 bytes. Test duration 60 seconds.
SLA RTT is set to maximum 10 ms.

	applicability

	This test case can be configured with different:

	packet sizes;

	burst sizes;

	ping intervals;

	test durations;

	test iterations.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also normal
to achieve in balanced L2 environments. However, to cover
most configurations, both bare metal and fully virtualized
ones, this value should be possible to achieve and
acceptable for black box testing. Many real time
applications start to suffer badly if the RTT time is higher
than this. Some may suffer bad also close to this RTT, while
others may not suffer at all. It is a compromise that may
have to be tuned for different configuration purposes.

	usability

	This test case should be run in Kunernetes environment.

	references

	Ping [https://linux.die.net/man/8/ping]

ETSI-NFV-TST001

	pre-test
conditions

	The test case Docker image (openretriever/yardstick) needs
to be pulled into Kubernetes environment.

No further requirements have been identified.

	test sequence

	description and expected result

	step 1

	Two containers are booted, as server and client.

	step 2

	Yardstick is connected with the server container by using
ssh. ‘ping_benchmark’ bash script is copied from Jump Host
to the server container via the ssh tunnel.

	step 3

	Ping is invoked. Ping packets are sent from server container
to client container. RTT results are calculated and checked
against the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 4

	Two containers are deleted.

	test verdict

	Test should not PASS if any RTT is above the optional SLA
value, or if there is a test case execution problem.

2.16.2.33. Yardstick Test Case Description TC081

	Network Latency

	test case id

	OPNFV_YARDSTICK_TC081_NETWORK_LATENCY_BETWEEN_CONTAINER_AND
_VM

	metric

	RTT (Round Trip Time)

	test purpose

	The purpose of TC081 is to do a basic verification that
network latency is within acceptable boundaries when packets
travel between a containers and a VM.

The purpose is also to be able to spot the trends.
Test results, graphs and similar shall be stored for
comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

	test tool

	ping

Ping is a computer network administration software utility
used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time for
packet sent from the originating host to a destination
computer that are echoed back to the source.

Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the
Yardstick Docker image. (For example also a Cirros image can
be downloaded from cirros-image [https://download.cirros-cloud.net], it includes ping)

	test topology

	Ping packets (ICMP protocol’s mandatory ECHO_REQUEST
datagram) are sent from host container to target vm to
elicit ICMP ECHO_RESPONSE.

	configuration

	file: opnfv_yardstick_tc081.yaml

Packet size 200 bytes. Test duration 60 seconds.
SLA RTT is set to maximum 10 ms.

	applicability

	This test case can be configured with different:

	packet sizes;

	burst sizes;

	ping intervals;

	test durations;

	test iterations.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also normal
to achieve in balanced L2 environments. However, to cover
most configurations, both bare metal and fully virtualized
ones, this value should be possible to achieve and
acceptable for black box testing. Many real time
applications start to suffer badly if the RTT time is higher
than this. Some may suffer bad also close to this RTT, while
others may not suffer at all. It is a compromise that may
have to be tuned for different configuration purposes.

	usability

	This test case should be run in Kunernetes environment.

	references

	Ping [https://linux.die.net/man/8/ping]

ETSI-NFV-TST001

	pre-test
conditions

	The test case Docker image (openretriever/yardstick) needs
to be pulled into Kubernetes environment.
The VM image (cirros-image) needs to be installed into
Glance with ping included in it.

No further requirements have been identified.

	test sequence

	description and expected result

	step 1

	A containers is booted, as server and a VM is booted as
client.

	step 2

	Yardstick is connected with the server container by using
ssh. ‘ping_benchmark’ bash script is copied from Jump Host
to the server container via the ssh tunnel.

	step 3

	Ping is invoked. Ping packets are sent from server container
to client VM. RTT results are calculated and checked against
the SLA. Logs are produced and stored.

Result: Logs are stored.

	step 4

	The container and VM are deleted.

	test verdict

	Test should not PASS if any RTT is above the optional SLA
value, or if there is a test case execution problem.

2.16.2.34. Yardstick Test Case Description TC083

	Throughput per VM test

	test case id

	OPNFV_YARDSTICK_TC083_Network latency and throughput between
VMs

	metric

	Network latency and throughput

	test purpose

	To evaluate the IaaS network performance with regards to
flows and throughput, such as if and how different amounts
of packet sizes and flows matter for the throughput between
2 VMs in one pod.

	configuration

	file: opnfv_yardstick_tc083.yaml

Packet size: default 1024 bytes.

Test length: default 20 seconds.

The client and server are distributed on different nodes.

For SLA max_mean_latency is set to 100.

	test tool

	netperf [http://www.netperf.org/netperf/training/Netperf.html]
Netperf is a software application that provides network
bandwidth testing between two hosts on a network. It
supports Unix domain sockets, TCP, SCTP, DLPI and UDP via
BSD Sockets. Netperf provides a number of predefined tests
e.g. to measure bulk (unidirectional) data transfer or
request response performance.
(netperf is not always part of a Linux distribution, hence
it needs to be installed.)

	references

	netperf Man pages
ETSI-NFV-TST001

	applicability

	Test can be configured with different packet sizes and
test duration. Default values exist.

SLA (optional): max_mean_latency

	pre-test
conditions

	The POD can be reached by external ip and logged on via ssh

	test sequence

	description and expected result

	step 1

	Install netperf tool on each specified node, one is as the
server, and the other as the client.

	step 2

	Log on to the client node and use the netperf command to
execute the network performance test

	step 3

	The throughput results stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.2.35. Yardstick Test Case Description TC084

	Compute Performance

	test case id

	OPNFV_YARDSTICK_TC084_SPEC CPU 2006 FOR VM

	metric

	compute-intensive performance

	test purpose

	The purpose of TC084 is to evaluate the IaaS compute
performance by using SPEC CPU 2006 benchmark. The SPEC CPU
2006 benchmark has several different ways to measure
computer performance. One way is to measure how fast the
computer completes a single task; this is called a speed
measurement. Another way is to measure how many tasks
computer can accomplish in a certain amount of time; this is
called a throughput, capacity or rate measurement.

	test tool

	SPEC CPU 2006

The SPEC CPU 2006 benchmark is SPEC’s industry-standardized,
CPU-intensive benchmark suite, stressing a system’s
processor, memory subsystem and compiler. This benchmark
suite includes the SPECint benchmarks and the SPECfp
benchmarks. The SPECint 2006 benchmark contains 12 different
benchmark tests and the SPECfp 2006 benchmark contains 19
different benchmark tests.

SPEC CPU 2006 is not always part of a Linux distribution.
SPEC requires that users purchase a license and agree with
their terms and conditions. For this test case, users must
manually download cpu2006-1.2.iso from the SPEC website and
save it under the yardstick/resources folder (e.g. /home/
opnfv/repos/yardstick/yardstick/resources/cpu2006-1.2.iso)
SPEC CPU® 2006 benchmark is available for purchase via the
SPEC order form (https://www.spec.org/order.html).

	test
description

	This test case uses SPEC CPU 2006 benchmark to measure
compute-intensive performance of VMs.

	configuration

	file: opnfv_yardstick_tc084.yaml

benchmark_subset is set to int.

SLA is not available in this test case.

	applicability

	Test can be configured with different:

	benchmark_subset - a subset of SPEC CPU 2006 benchmarks
to run;

	SPECint_benchmark - a SPECint benchmark to run;

	SPECint_benchmark - a SPECfp benchmark to run;

	output_format - desired report format;

	runspec_config - SPEC CPU 2006 config file provided to
the runspec binary;

	runspec_iterations - the number of benchmark iterations
to execute. For a reportable run, must be 3;

	runspec_tune - tuning to use (base, peak, or all). For a
reportable run, must be either base or all. Reportable
runs do base first, then (optionally) peak;

	runspec_size - size of input data to run (test, train, or
ref). Reportable runs ensure that your binaries can
produce correct results with the test and train workloads

	usability

	This test case is used for executing SPEC CPU 2006 benchmark
on virtual machines. The SPECint 2006 benchmark takes
approximately 5 hours. (The time may vary due to different
VM cpu configurations)

	references

	spec_cpu_2006 [https://www.spec.org/cpu2006/]

ETSI-NFV-TST001

	pre-test
conditions

	To run and install SPEC CPU 2006, the following are
required:

	For SPECint 2006: Both C99 and C++98 compilers are
installed in VM images;

	For SPECfp 2006: All three of C99, C++98 and Fortran-95
compilers installed in VM images;

	At least 4GB of disk space availabile on VM.

gcc 4.8.* and g++ 4.8.* version have been tested in Ubuntu
14.04, Ubuntu 16.04 and Redhat Enterprise Linux 7.4 image.
Higher gcc and g++ version may cause compiling error.

For more SPEC CPU 2006 dependencies please visit
(https://www.spec.org/cpu2006/Docs/techsupport.html)

	test sequence

	description and expected result

	step 1

	cpu2006-1.2.iso has been saved under the yardstick/resources
folder (e.g. /home/opnfv/repos/yardstick/yardstick/resources
/cpu2006-1.2.iso). Additionally, to use your custom runspec
config file you can save it under the yardstick/resources/
files folder and specify the config file name in the
runspec_config parameter.

	step 2

	Upload SPEC CPU 2006 ISO to the target VM using scp and
install SPEC CPU 2006.

	step 3

	Connect to the target server using SSH.
If custom runspec config file is used, copy this file from
yardstick to the target VM via the SSH tunnel.

	step 4

	SPEC CPU 2006 benchmark is invoked and SPEC CPU 2006 metrics
are generated.

	step 5

	Text, HTML, CSV, PDF, and Configuration file outputs for the
SPEC CPU 2006 metrics are fetched from the VM and stored
under /tmp/result folder.

	test verdict

	None. SPEC CPU 2006 results are collected and stored.

2.16.3.1.1. Yardstick Test Case Description TC019

	Control Node Openstack Service High Availability

	test case id

	OPNFV_YARDSTICK_TC019_HA: Control node Openstack service down

	test purpose

	This test case will verify the high availability of the
service provided by OpenStack (like nova-api, neutro-server)
on control node.

	test method

	This test case kills the processes of a specific Openstack
service on a selected control node, then checks whether the
request of the related Openstack command is OK and the
killed processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “nova-api”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:

	the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:

	monitor_type: which is used for finding the monitor
class and related scritps. It should be always set to
“openstack-cmd” for this monitor.

	command_name: which is the command name used for
request

	the “process” monitor check whether a process is running
on a specific node, which needs three parameters:

	monitor_type: which used for finding the monitor class
and related scritps. It should be always set to
“process” for this monitor.

	process_name: which is the process name for monitor

	host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “openstack server list”
monitor2:
-monitor_type: “process”
-process_name: “nova-api”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc019.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.2. Yardstick Test Case Description TC025

	OpenStack Controller Node abnormally shutdown High Availability

	test case id

	OPNFV_YARDSTICK_TC025_HA: OpenStack Controller Node
abnormally shutdown

	test purpose

	This test case will verify the high availability of
controller node. When one of the controller node abnormally
shutdown, the service provided by it should be OK.

	test method

	This test case shutdowns a specified controller node with
some fault injection tools, then checks whether all services
provided by the controller node are OK with some monitor
tools.

	attackers

	In this test case, an attacker called “host-shutdown” is
needed. This attacker includes two parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “host-shutdown” in
this test case.
2) host: the name of a controller node being attacked.

e.g.
-fault_type: “host-shutdown”
-host: node1

	monitors

	In this test case, one kind of monitor are needed:

	the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters

	monitor_type: which is used for finding the monitor
class and related scripts. It should be always set to
“openstack-cmd” for this monitor.

	command_name: which is the command name used for
request

There are four instance of the “openstack-cmd” monitor:
monitor1:
-monitor_type: “openstack-cmd”
-api_name: “nova image-list”
monitor2:
-monitor_type: “openstack-cmd”
-api_name: “neutron router-list”
monitor3:
-monitor_type: “openstack-cmd”
-api_name: “heat stack-list”
monitor4:
-monitor_type: “openstack-cmd”
-api_name: “cinder list”

	metrics

	In this test case, there is one metric:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc019.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
shutdown script on the host

Result: The host will be shutdown.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: All monitor result will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It restarts the
specified controller node if it is not restarted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.3. Yardstick Test Case Description TC045

	Control Node Openstack Service High Availability - Neutron Server

	test case id

	OPNFV_YARDSTICK_TC045: Control node Openstack service down -
neutron server

	test purpose

	This test case will verify the high availability of the
network service provided by OpenStack (neutro-server) on
control node.

	test method

	This test case kills the processes of neutron-server service
on a selected control node, then checks whether the request
of the related Openstack command is OK and the killed
processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “neutron-
server”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “neutron-server”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be neutron related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scritps. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “neutron agent-list”
monitor2:
-monitor_type: “process”
-process_name: “neutron-server”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc045.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.4. Yardstick Test Case Description TC046

	Control Node Openstack Service High Availability - Keystone

	test case id

	OPNFV_YARDSTICK_TC046: Control node Openstack service down -
keystone

	test purpose

	This test case will verify the high availability of the
user service provided by OpenStack (keystone) on control
node.

	test method

	This test case kills the processes of keystone service on a
selected control node, then checks whether the request of
the related Openstack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “keystone”
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “keystone”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be keystone related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scritps. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “keystone user-list”
monitor2:
-monitor_type: “process”
-process_name: “keystone”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc046.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.5. Yardstick Test Case Description TC047

	Control Node Openstack Service High Availability - Glance Api

	test case id

	OPNFV_YARDSTICK_TC047: Control node Openstack service down -
glance api

	test purpose

	This test case will verify the high availability of the
image service provided by OpenStack (glance-api) on control
node.

	test method

	This test case kills the processes of glance-api service on
a selected control node, then checks whether the request of
the related Openstack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “glance-
api”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “glance-api”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be glance related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scritps. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “glance image-list”
monitor2:
-monitor_type: “process”
-process_name: “glance-api”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc047.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.6. Yardstick Test Case Description TC048

	Control Node Openstack Service High Availability - Cinder Api

	test case id

	OPNFV_YARDSTICK_TC048: Control node Openstack service down -
cinder api

	test purpose

	This test case will verify the high availability of the
volume service provided by OpenStack (cinder-api) on control
node.

	test method

	This test case kills the processes of cinder-api service on
a selected control node, then checks whether the request of
the related Openstack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “cinder-
api”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “cinder-api”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be cinder related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scritps. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “cinder list”
monitor2:
-monitor_type: “process”
-process_name: “cinder-api”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc048.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test case

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.7. Yardstick Test Case Description TC049

	Control Node Openstack Service High Availability - Swift Proxy

	test case id

	OPNFV_YARDSTICK_TC049: Control node Openstack service down -
swift proxy

	test purpose

	This test case will verify the high availability of the
storage service provided by OpenStack (swift-proxy) on
control node.

	test method

	This test case kills the processes of swift-proxy service on
a selected control node, then checks whether the request of
the related Openstack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “swift-
proxy”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “swift-proxy”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be swift related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scritps. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “swift stat”
monitor2:
-monitor_type: “process”
-process_name: “swift-proxy”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc049.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.8. Yardstick Test Case Description TC050

	OpenStack Controller Node Network High Availability

	test case id

	OPNFV_YARDSTICK_TC050: OpenStack Controller Node Network
High Availability

	test purpose

	This test case will verify the high availability of control
node. When one of the controller failed to connect the
network, which breaks down the Openstack services on this
node. These Openstack service should able to be accessed by
other controller nodes, and the services on failed
controller node should be isolated.

	test method

	This test case turns off the network interfaces of a
specified control node, then checks whether all services
provided by the control node are OK with some monitor tools.

	attackers

	In this test case, an attacker called “close-interface” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “close-interface” in
this test case.
2) host: which is the name of a control node being attacked.
3) interface: the network interface to be turned off.

The interface to be closed by the attacker can be set by the
variable of “{{ interface_name }}”:

attackers:
 -
 fault_type: "general-attacker"
 host: {{ attack_host }}
 key: "close-br-public"
 attack_key: "close-interface"
 action_parameter:
 interface: {{ interface_name }}
 rollback_parameter:
 interface: {{ interface_name }}

	monitors

	In this test case, the monitor named “openstack-cmd” is
needed. The monitor needs needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request

There are four instance of the “openstack-cmd” monitor:

monitor1:
 - monitor_type: "openstack-cmd"
 - command_name: "nova image-list"
monitor2:
 - monitor_type: "openstack-cmd"
 - command_name: "neutron router-list"
monitor3:
 - monitor_type: "openstack-cmd"
 - command_name: "heat stack-list"
monitor4:
 - monitor_type: "openstack-cmd"
 - command_name: "cinder list"

	metrics

	In this test case, there is one metric:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc050.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the turnoff network interface script with param value
specified by “{{ interface_name }}”.

Result: The specified network interface will be down.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It turns up the
network interface of the control node if it is not turned
up.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.9. Yardstick Test Case Description TC051

	OpenStack Controller Node CPU Overload High Availability

	test case id

	OPNFV_YARDSTICK_TC051: OpenStack Controller Node CPU
Overload High Availability

	test purpose

	This test case will verify the high availability of control
node. When the CPU usage of a specified controller node is
stressed to 100%, which breaks down the Openstack services
on this node. These Openstack service should able to be
accessed by other controller nodes, and the services on
failed controller node should be isolated.

	test method

	This test case stresses the CPU uasge of a specified control
node to 100%, then checks whether all services provided by
the environment are OK with some monitor tools.

	attackers

	In this test case, an attacker called “stress-cpu” is
needed. This attacker includes two parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “stress-cpu” in
this test case.
2) host: which is the name of a control node being attacked.
e.g.
-fault_type: “stress-cpu”
-host: node1

	monitors

	In this test case, the monitor named “openstack-cmd” is
needed. The monitor needs needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request

There are four instance of the “openstack-cmd” monitor:
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “nova image-list”
monitor2:
-monitor_type: “openstack-cmd”
-command_name: “neutron router-list”
monitor3:
-monitor_type: “openstack-cmd”
-command_name: “heat stack-list”
monitor4:
-monitor_type: “openstack-cmd”
-command_name: “cinder list”

	metrics

	In this test case, there is one metric:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc051.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the stress cpu script on the host.

Result: The CPU usage of the host will be stressed to 100%.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It kills the
process that stresses the CPU usage.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.10. Yardstick Test Case Description TC052

	OpenStack Controller Node Disk I/O Block High Availability

	test case id

	OPNFV_YARDSTICK_TC052: OpenStack Controller Node Disk I/O
Block High Availability

	test purpose

	This test case will verify the high availability of control
node. When the disk I/O of a specified disk is blocked,
which breaks down the Openstack services on this node. Read
and write services should still be accessed by other
controller nodes, and the services on failed controller node
should be isolated.

	test method

	This test case blocks the disk I/O of a specified control
node, then checks whether the services that need to read or
wirte the disk of the control node are OK with some monitor
tools.

	attackers

	In this test case, an attacker called “disk-block” is
needed. This attacker includes two parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “disk-block” in this
test case.
2) host: which is the name of a control node being attacked.
e.g.
-fault_type: “disk-block”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scripts. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.

e.g.
-monitor_type: “openstack-cmd”
-command_name: “nova flavor-list”

2. the second monitor verifies the read and write function
by a “operation” and a “result checker”.
the “operation” have two parameters:
1) operation_type: which is used for finding the operation
class and related scripts.
2) action_parameter: parameters for the operation.
the “result checker” have three parameters:
1) checker_type: which is used for finding the reuslt
checker class and realted scripts.
2) expectedValue: the expected value for the output of the
checker script.
3) condition: whether the expected value is in the output of
checker script or is totally same with the output.

In this case, the “operation” adds a flavor and the “result
checker” checks whether ths flavor is created. Their
parameters show as follows:

operation:
-operation_type: "nova-create-flavor"
-action_parameter:
 flavorconfig: "test-001 test-001 100 1 1"
result checker:
-checker_type: "check-flavor"
-expectedValue: "test-001"
-condition: "in"

	metrics

	In this test case, there is one metric:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc052.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	do attacker: connect the host through SSH, and then execute
the block disk I/O script on the host.

Result: The disk I/O of the host will be blocked

	step 2

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 3

	do operation: add a flavor

	step 4

	do result checker: check whether the falvor is created

	step 5

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 6

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It excutes the
release disk I/O script to release the blocked I/O.

	test verdict

	Fails if monnitor SLA is not passed or the result checker is
not passed, or if there is a test case execution problem.

2.16.3.1.11. Yardstick Test Case Description TC053

	OpenStack Controller Load Balance Service High Availability

	test case id

	OPNFV_YARDSTICK_TC053: OpenStack Controller Load Balance
Service High Availability

	test purpose

	This test case will verify the high availability of the
load balance service(current is HAProxy) that supports
OpenStack on controller node. When the load balance service
of a specified controller node is killed, whether other load
balancers on other controller nodes will work, and whether
the controller node will restart the load balancer are
checked.

	test method

	This test case kills the processes of load balance service
on a selected control node, then checks whether the request
of the related Openstack command is OK and the killed
processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “swift-
proxy”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “haproxy”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class
and related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process
In this case, the command_name of monitor1 should be
services that is supported by load balancer and the process-
name of monitor2 should be “haproxy”, for example:

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “nova image-list”
monitor2:
-monitor_type: “process”
-process_name: “haproxy”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximun time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc053.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.12. Yardstick Test Case Description TC054

	OpenStack Virtual IP High Availability

	test case id

	OPNFV_YARDSTICK_TC054: OpenStack Virtual IP High
Availability

	test purpose

	This test case will verify the high availability for virtual
ip in the environment. When master node of virtual ip is
abnormally shutdown, connection to virtual ip and
the services binded to the virtual IP it should be OK.

	test method

	This test case shutdowns the virtual IP master node with
some fault injection tools, then checks whether virtual ips
can be pinged and services binded to virtual ip are OK with
some monitor tools.

	attackers

	In this test case, an attacker called “control-shutdown” is
needed. This attacker includes two parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “control-shutdown” in
this test case.
2) host: which is the name of a control node being attacked.

In this case the host should be the virtual ip master node,
that means the host ip is the virtual ip, for exapmle:
-fault_type: “control-shutdown”
-host: node1(the VIP Master node)

	monitors

	In this test case, two kinds of monitor are needed:
1. the “ip_status” monitor that pings a specific ip to check
the connectivity of this ip, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scripts. It should be always set to “ip_status”
for this monitor.
2) ip_address: The ip to be pinged. In this case, ip_address
should be the virtual IP.

2. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scripts. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.

e.g.
monitor1:
-monitor_type: “ip_status”
-host: 192.168.0.2
monitor2:
-monitor_type: “openstack-cmd”
-command_name: “nova image-list”

	metrics

	In this test case, there are two metrics:
1) ping_outage_time: which-indicates the maximum outage time
to ping the specified host.
2)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc054.yaml
-Attackers: see above “attackers” discription
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” discription
-SLA: see above “metrics” discription

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the shutdown script on the VIP master node.

Result: VIP master node will be shutdown

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It restarts the
original VIP master node if it is not restarted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.13. Yardstick Test Case Description TC056

	OpenStack Controller Messaging Queue Service High Availability

	test case id

	OPNFV_YARDSTICK_TC056:OpenStack Controller Messaging Queue
Service High Availability

	test purpose

	This test case will verify the high availability of the
messaging queue service(RabbitMQ) that supports OpenStack on
controller node. When messaging queue service(which is
active) of a specified controller node is killed, the test
case will check whether messaging queue services(which are
standby) on other controller nodes will be switched active,
and whether the cluster manager on attacked the controller
node will restart the stopped messaging queue.

	test method

	This test case kills the processes of messaging queue
service on a selected controller node, then checks whether
the request of the related Openstack command is OK and the
killed processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case, this parameter should always set to “rabbitmq”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “rabbitmq-server”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class
and related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node runing the process
In this case, the command_name of monitor1 should be
services that will use the messaging queue(current nova,
neutron, cinder ,heat and ceilometer are using RabbitMQ)
, and the process-name of monitor2 should be “rabbitmq”,
for example:

e.g.
monitor1-1:
-monitor_type: “openstack-cmd”
-command_name: “openstack image list”
monitor1-2:
-monitor_type: “openstack-cmd”
-command_name: “openstack network list”
monitor1-3:
-monitor_type: “openstack-cmd”
-command_name: “openstack volume list”
monitor2:
-monitor_type: “process”
-process_name: “rabbitmq”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc056.yaml
-Attackers: see above “attackers” description
-waiting_time: which is the time (seconds) from the process
being killed to stoping monitors the monitors
-Monitors: see above “monitors” description
-SLA: see above “metrics” description

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.14. Yardstick Test Case Description TC057

	OpenStack Controller Cluster Management Service High Availability

	test case id

	OPNFV_YARDSTICK_TC057_HA: OpenStack Controller Cluster
Management Service High Availability

	test purpose

	This test case will verify the quorum configuration of the
cluster manager(pacemaker) on controller nodes. When a
controller node , which holds all active application
resources, failed to communicate with other cluster nodes
(via corosync), the test case will check whether the standby
application resources will take place of those active
application resources which should be regarded to be down in
the cluster manager.

	test method

	This test case kills the processes of cluster messaging
service(corosync) on a selected controller node(the node
holds the active application resources), then checks whether
active application resources are switched to other
controller nodes and whether the Openstack commands are OK.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the load
balance service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
3) host: which is the name of a control node being attacked.

In this case, this process name should set to “corosync” ,
for example
-fault_type: “kill-process”
-process_name: “corosync”
-host: node1

	monitors

	In this test case, a kind of monitor is needed:

	the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:

	monitor_type: which is used for finding the monitor
class and related scripts. It should be always set to
“openstack-cmd” for this monitor.

	command_name: which is the command name used for
request

In this case, the command_name of monitor1 should be
services that are managed by the cluster manager.
(Since rabbitmq and haproxy are managed by pacemaker,
most Openstack Services can be used to check high
availability in this case)

(e.g.)
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “nova image-list”
monitor2:
-monitor_type: “openstack-cmd”
-command_name: “neutron router-list”
monitor3:
-monitor_type: “openstack-cmd”
-command_name: “heat stack-list”
monitor4:
-monitor_type: “openstack-cmd”
-command_name: “cinder list”

	checkers

	In this test case, a checker is needed, the checker will
the status of application resources in pacemaker and the
checker have three parameters:
1) checker_type: which is used for finding the result
checker class and related scripts. In this case the checker
type will be “pacemaker-check-resource”
2) resource_name: the application resource name
3) resource_status: the expected status of the resource
4) expectedValue: the expected value for the output of the
checker script, in the case the expected value will be the
identifier in the cluster manager
3) condition: whether the expected value is in the output of
checker script or is totally same with the output.
(note: pcs is required to installed on controller node in
order to run this checker)

(e.g.)
checker1:
-checker_type: “pacemaker-check-resource”
-resource_name: “p_rabbitmq-server”
-resource_status: “Stopped”
-expectedValue: “node-1”
-condition: “in”
checker2:
-checker_type: “pacemaker-check-resource”
-resource_name: “p_rabbitmq-server”
-resource_status: “Master”
-expectedValue: “node-2”
-condition: “in”

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.

	test tool

	None. Self-developed.

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc057.yaml
-Attackers: see above “attackers” description
-Monitors: see above “monitors” description
-Checkers: see above “checkers” description
-Steps: the test case execution step, see “test sequence”
description below

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	do checker: check whether the status of application
resources on different nodes are updated

	step 4

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 5

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the cluster messaging process(corosync) on the
host, and restart the process if it is not running for next
test cases.
Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.15. Yardstick Test Case Description TC058

	OpenStack Controller Virtual Router Service High Availability

	test case id

	OPNFV_YARDSTICK_TC058: OpenStack Controller Virtual Router
Service High Availability

	test purpose

	This test case will verify the high availability of virtual
routers(L3 agent) on controller node. When a virtual router
service on a specified controller node is shut down, this
test case will check whether the network of virtual machines
will be affected, and whether the attacked virtual router
service will be recovered.

	test method

	This test case kills the processes of virtual router service
(l3-agent) on a selected controller node(the node holds the
active l3-agent), then checks whether the network routing
of virtual machines is OK and whether the killed service
will be recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the load
balance service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
3) host: which is the name of a control node being attacked.

In this case, this process name should set to “l3agent” ,
for example
-fault_type: “kill-process”
-process_name: “l3agent”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “ip_status” monitor that pings a specific ip to check
the connectivity of this ip, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scripts. It should be always set to “ip_status”
for this monitor.
2) ip_address: The ip to be pinged. In this case, ip_address
will be either an ip address of external network or an ip
address of a virtual machine.
3) host: The node on which ping will be executed, in this
case the host will be a virtual machine.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class
and related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor. In
this case, the process-name of monitor2 should be “l3agent”
3) host: which is the name of the node running the process

e.g.
monitor1-1:
-monitor_type: “ip_status”
-host: 172.16.0.11
-ip_address: 172.16.1.11
monitor1-2:
-monitor_type: “ip_status”
-host: 172.16.0.11
-ip_address: 8.8.8.8
monitor2:
-monitor_type: “process”
-process_name: “l3agent”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified Openstack command request.
2)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	None. Self-developed.

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc058.yaml
-Attackers: see above “attackers” description
-Monitors: see above “monitors” description
-Steps: the test case execution step, see “test sequence”
description below

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	pre-test
conditions

	The test case image needs to be installed into Glance
with cachestat included in the image.

	step 1

	Two host VMs are booted, these two hosts are in two
different networks, the networks are connected by a virtual
router.

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 4

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 5

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.
Virtual machines and network created in the test case will
be destoryed.

Notice: This post-action uses ‘lsb_release’ command to check
the host linux distribution and determine the OpenStack
service name to restart the process. Lack of ‘lsb_release’
on the host may cause failure to restart the process.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.16. Yardstick Test Case Description TC087

	SDN Controller resilience in non-HA configuration

	test case id

	OPNFV_YARDSTICK_TC087: SDN controller resilience in
non-HA configuration

	test purpose

	This test validates that network data plane services are
highly available in the event of an SDN Controller failure,
even if the SDN controller is deployed in a non-HA
configuration. Specifically, the test verifies that
existing data plane connectivity is not impacted, i.e. all
configured network services such as DHCP, ARP, L2,
L3 Security Groups should continue to operate
between the existing VMs while the SDN controller is
offline or rebooting.

The test also validates that new network service operations
(creating a new VM in the existing L2/L3 network or in a new
network, etc.) are operational after the SDN controller
has recovered from a failure.

	test method

	This test case fails the SDN controller service running
on the OpenStack controller node, then checks if already
configured DHCP/ARP/L2/L3/SNAT connectivity is not
impacted between VMs and the system is able to execute
new virtual network operations once the SDN controller
is restarted and has fully recovered

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:

	fault_type: which is used for finding the attacker’s
scripts. It should be set to ‘kill-process’ in this test

	process_name: should be set to the name of the SDN
controller process

	host: which is the name of a control node where the
SDN controller process is running

	e.g. -fault_type: “kill-process”
	-process_name: “opendaylight”
-host: node1

	monitors

	This test case utilizes two monitors of type “ip-status”
and one monitor of type “process” to track the following
conditions:

	“ping_same_network_l2”: monitor ICMP traffic between
VMs in the same Neutron network

	“ping_external_snat”: monitor ICMP traffic from VMs to
an external host on the Internet to verify SNAT
functionality.

	“SDN controller process monitor”: a monitor checking the
state of a specified SDN controller process. It measures
the recovery time of the given process.

Monitors of type “ip-status” use the “ping” utility to
verify reachability of a given target IP.

	operations

	In this test case, the following operations are needed:

	“nova-create-instance-in_network”: create a VM instance
in one of the existing Neutron network.

	metrics

	In this test case, there are two metrics:

	process_recover_time: which indicates the maximun
time (seconds) from the process being killed to
recovered

	packet_drop: measure the packets that have been dropped
by the monitors using pktgen.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	none

	configuration

	This test case needs two configuration files:

	test case file: opnfv_yardstick_tc087.yaml

	Attackers: see above “attackers” discription

	waiting_time: which is the time (seconds) from the
process being killed to stoping monitors the monitors

	Monitors: see above “monitors” discription

	SLA: see above “metrics” discription

	POD file: pod.yaml The POD configuration should record
on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

	test sequence

	Description and expected result

	pre-action

	
	The OpenStack cluster is set up with a single SDN
controller in a non-HA configuration.

	One or more Neutron networks are created with two or
more VMs attached to each of the Neutron networks.

	The Neutron networks are attached to a Neutron router
which is attached to an external network towards the
DCGW.

	step 1

	
	Start IP connectivity monitors:
	
	Check the L2 connectivity between the VMs in the same
Neutron network.

	Check connectivity from one VM to an external host on
the Internet to verify SNAT functionality.

Result: The monitor info will be collected.

	step 2

	Start attacker:
SSH connect to the VIM node and kill the SDN controller
process

Result: the SDN controller service will be shutdown

	step 3

	Verify the results of the IP connectivity monitors.

Result: The outage_time metric reported by the monitors
is zero.

	step 4

	Restart the SDN controller.

	step 5

	Create a new VM in the existing Neutron network

	step 6

	
	Verify connectivity between VMs as follows:
	
	Check the L2 connectivity between the previously
existing VM and the newly created VM on the same
Neutron network by sending ICMP messages

	step 7

	Stop IP connectivity monitors after a period of time
specified by “waiting_time”

Result: The monitor info will be aggregated

	step 8

	Verify the IP connectivity monitor results

Result: IP connectivity monitor should not have any packet
drop failures reported

	test verdict

	This test fails if the SLAs are not met or if there is a
test case execution problem. The SLAs are define as follows
for this test:

	SDN Controller recovery

	process_recover_time <= 30 sec

	no impact on data plane connectivity during SDN
controller failure and recovery.

	packet_drop == 0

2.16.3.1.17. Yardstick Test Case Description TC088

	Control Node Openstack Service High Availability - Nova Scheduler

	test case id

	OPNFV_YARDSTICK_TC088: Control node Openstack service down -
nova scheduler

	test purpose

	This test case will verify the high availability of the
compute scheduler service provided by OpenStack (nova-
scheduler) on control node.

	test method

	This test case kills the processes of nova-scheduler service
on a selected control node, then checks whether the request
of the related OpenStack command is OK and the killed
processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “nova-
scheduler”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “nova-scheduler”
-host: node1

	monitors

	In this test case, one kind of monitor is needed:
1. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node running the process

e.g.
monitor:
-monitor_type: “process”
-process_name: “nova-scheduler”
-host: node1

	operations

	In this test case, the following operations are needed:
1. “nova-create-instance”: create a VM instance to check
whether the nova-scheduler works normally.

	metrics

	In this test case, there are one metric:
1)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc088.yaml
-Attackers: see above “attackers” description
-waiting_time: which is the time (seconds) from the process
being killed to stopping monitors the monitors
-Monitors: see above “monitors” description
-SLA: see above “metrics” description

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 2

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 3

	create a new instance to check whether the nova scheduler
works normally.

	step 4

	stop the monitor after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	post-action

	It is the action when the test cases exist. It will check the
status of the specified process on the host, and restart the
process if it is not running for next test cases

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.18. Yardstick Test Case Description TC089

	Control Node Openstack Service High Availability - Nova Conductor

	test case id

	OPNFV_YARDSTICK_TC089: Control node Openstack service down -
nova conductor

	test purpose

	This test case will verify the high availability of the
compute database proxy service provided by OpenStack (nova-
conductor) on control node.

	test method

	This test case kills the processes of nova-conductor service
on a selected control node, then checks whether the request
of the related OpenStack command is OK and the killed
processes are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “nova-
conductor”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “nova-conductor”
-host: node1

	monitors

	In this test case, one kind of monitor is needed:
1. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node running the process

e.g.
monitor:
-monitor_type: “process”
-process_name: “nova-conductor”
-host: node1

	operations

	In this test case, the following operations are needed:
1. “nova-create-instance”: create a VM instance to check
whether the nova-conductor works normally.

	metrics

	In this test case, there are one metric:
1)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc089.yaml
-Attackers: see above “attackers” description
-waiting_time: which is the time (seconds) from the process
being killed to stopping monitors the monitors
-Monitors: see above “monitors” description
-SLA: see above “metrics” description

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 2

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 3

	create a new instance to check whether the nova conductor
works normally.

	step 4

	stop the monitor after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	post-action

	It is the action when the test cases exist. It will check the
status of the specified process on the host, and restart the
process if it is not running for next test cases

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.19. Yardstick Test Case Description TC090

	Control Node OpenStack Service High Availability - Database Instances

	test case id

	OPNFV_YARDSTICK_TC090: Control node OpenStack service down -
database instances

	test purpose

	This test case will verify the high availability of the
data base instances used by OpenStack (mysql) on control
node.

	test method

	This test case kills the processes of database service on a
selected control node, then checks whether the request of
the related OpenStack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to the name
of the database service of OpenStack.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “mysql”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scritps. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be neutron related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node running the process

The examples of monitors show as follows, there are four
instance of the “openstack-cmd” monitor, in order to check
the database connection of different OpenStack components.

monitor1:
-monitor_type: “openstack-cmd”
-api_name: “openstack image list”
monitor2:
-monitor_type: “openstack-cmd”
-api_name: “openstack router list”
monitor3:
-monitor_type: “openstack-cmd”
-api_name: “openstack stack list”
monitor4:
-monitor_type: “openstack-cmd”
-api_name: “openstack volume list”
monitor5:
-monitor_type: “process”
-process_name: “mysql”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified OpenStack command request.
2)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc090.yaml
-Attackers: see above “attackers” description
-waiting_time: which is the time (seconds) from the process
being killed to stopping monitors the monitors
-Monitors: see above “monitors” description
-SLA: see above “metrics” description

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check the
status of the specified process on the host, and restart the
process if it is not running for next test cases

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.20. Yardstick Test Case Description TC091

	Control Node Openstack Service High Availability - Heat Api

	test case id

	OPNFV_YARDSTICK_TC091: Control node OpenStack service down -
heat api

	test purpose

	This test case will verify the high availability of the
orchestration service provided by OpenStack (heat-api) on
control node.

	test method

	This test case kills the processes of heat-api service on a
selected control node, then checks whether the request of
the related OpenStack command is OK and the killed processes
are recovered.

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case.
2) process_name: which is the process name of the specified
OpenStack service. If there are multiple processes use the
same name on the host, all of them are killed by this
attacker.
In this case. This parameter should always set to “heat-api”.
3) host: which is the name of a control node being attacked.

e.g.
-fault_type: “kill-process”
-process_name: “heat-api”
-host: node1

	monitors

	In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request a specific
OpenStack command, which needs two parameters:
1) monitor_type: which is used for finding the monitor class
and related scripts. It should be always set to
“openstack-cmd” for this monitor.
2) command_name: which is the command name used for request.
In this case, the command name should be neutron related
commands.

2. the “process” monitor check whether a process is running
on a specific node, which needs three parameters:
1) monitor_type: which used for finding the monitor class and
related scripts. It should be always set to “process”
for this monitor.
2) process_name: which is the process name for monitor
3) host: which is the name of the node running the process

e.g.
monitor1:
-monitor_type: “openstack-cmd”
-command_name: “heat stack list”
monitor2:
-monitor_type: “process”
-process_name: “heat-api”
-host: node1

	metrics

	In this test case, there are two metrics:
1)service_outage_time: which indicates the maximum outage
time (seconds) of the specified OpenStack command request.
2)process_recover_time: which indicates the maximum time
(seconds) from the process being killed to recovered

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	ETSI NFV REL001

	configuration

	This test case needs two configuration files:
1) test case file: opnfv_yardstick_tc091.yaml
-Attackers: see above “attackers” description
-waiting_time: which is the time (seconds) from the process
being killed to the monitor stopped
-Monitors: see above “monitors” description
-SLA: see above “metrics” description

2)POD file: pod.yaml
The POD configuration should record on pod.yaml first.
the “host” item in this test case will use the node name in
the pod.yaml.

	test sequence

	description and expected result

	step 1

	start monitors:
each monitor will run with independently process

Result: The monitor info will be collected.

	step 2

	do attacker: connect the host through SSH, and then execute
the kill process script with param value specified by
“process_name”

Result: Process will be killed.

	step 3

	stop monitors after a period of time specified by
“waiting_time”

Result: The monitor info will be aggregated.

	step 4

	verify the SLA

Result: The test case is passed or not.

	post-action

	It is the action when the test cases exist. It will check the
status of the specified process on the host, and restart the
process if it is not running for next test cases

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.21. Yardstick Test Case Description TC092

	SDN Controller resilience in HA configuration

	test case id

	OPNFV_YARDSTICK_TC092: SDN controller resilience and high
availability HA configuration

	test purpose

	This test validates SDN controller node high availability by
verifying there is no impact on the data plane connectivity
when one SDN controller fails in a HA configuration,
i.e. all existing configured network services DHCP, ARP, L2,
L3VPN, Security Groups should continue to operate
between the existing VMs while one SDN controller instance
is offline and rebooting.

The test also validates that network service operations such
as creating a new VM in an existing or new L2 network
network remain operational while one instance of the
SDN controller is offline and recovers from the failure.

	test method

	
	This test case:
	
	fails one instance of a SDN controller cluster running
in a HA configuration on the OpenStack controller node

	checks if already configured L2 connectivity between
existing VMs is not impacted

	verifies that the system never loses the ability to
execute virtual network operations, even when the
failed SDN Controller is still recovering

	attackers

	In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:

	fault_type: which is used for finding the attacker’s
scripts. It should be set to ‘kill-process’ in this test

	process_name: should be set to sdn controller
process

	host: which is the name of a control node where
opendaylight process is running

	example:
	
	fault_type: “kill-process”

	process_name: “opendaylight-karaf” (TBD)

	host: node1

	monitors

	
	In this test case, the following monitors are needed
	
	ping_same_network_l2: monitor pinging traffic
between the VMs in same neutron network

	ping_external_snat: monitor ping traffic from VMs to
external destinations (e.g. google.com)

	SDN controller process monitor: a monitor checking
the state of a specified SDN controller process. It
measures the recovery time of the given process.

	operations

	
	In this test case, the following operations are needed:
	
	“nova-create-instance-in_network”: create a VM instance
in one of the existing neutron network.

	metrics

	
	In this test case, there are two metrics:
	
	process_recover_time: which indicates the maximun
time (seconds) from the process being killed to
recovered

	packet_drop: measure the packets that have been dropped
by the monitors using pktgen.

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	TBD

	configuration

	This test case needs two configuration files:
1. test case file: opnfv_yardstick_tc092.yaml

	Attackers: see above “attackers” discription

	Monitors: see above “monitors” discription

	waiting_time: which is the time (seconds) from the
process being killed to stoping monitors the
monitors

	SLA: see above “metrics” discription

	POD file: pod.yaml The POD configuration should record
on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

	test sequence

	Description and expected result

	pre-action

	
	The OpenStack cluster is set up with an SDN controller
running in a three node cluster configuration.

	One or more neutron networks are created with two or
more VMs attached to each of the neutron networks.

	The neutron networks are attached to a neutron router
which is attached to an external network the towards
DCGW.

	The master node of SDN controller cluster is known.

	step 1

	
	Start ip connectivity monitors:
	
	Check the L2 connectivity between the VMs in the same
neutron network.

	Check the external connectivity of the VMs.

Each monitor runs in an independent process.

Result: The monitor info will be collected.

	step 2

	Start attacker:
SSH to the VIM node and kill the SDN controller process
determined in step 2.

Result: One SDN controller service will be shut down

	step 3

	Restart the SDN controller.

	step 4

	Create a new VM in the existing Neutron network while the
SDN controller is offline or still recovering.

	step 5

	Stop IP connectivity monitors after a period of time
specified by “waiting_time”

Result: The monitor info will be aggregated

	step 6

	Verify the IP connectivity monitor result

Result: IP connectivity monitor should not have any packet
drop failures reported

	step 7

	Verify process_recover_time, which indicates the maximun
time (seconds) from the process being killed to recovered,
is within the SLA. This step blocks until either the
process has recovered or a timeout occurred.

Result: process_recover_time is within SLA limits, if not,
test case failed and stopped.

	step 8

	Start IP connectivity monitors for the new VM:

	Check the L2 connectivity from the existing VMs to the
new VM in the Neutron network.

	Check connectivity from one VM to an external host on
the Internet to verify SNAT functionality.

Result: The monitor info will be collected.

	step 9

	Stop IP connectivity monitors after a period of time
specified by “waiting_time”

Result: The monitor info will be aggregated

	step 10

	Verify the IP connectivity monitor result

Result: IP connectivity monitor should not have any packet
drop failures reported

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.1.22. Yardstick Test Case Description TC093

	SDN Vswitch resilience in non-HA or HA configuration

	test case id

	OPNFV_YARDSTICK_TC093: SDN Vswitch resilience in
non-HA or HA configuration

	test purpose

	This test validates that network data plane services are
resilient in the event of Virtual Switch failure
in compute nodes. Specifically, the test verifies that
existing data plane connectivity is not permanently impacted
i.e. all configured network services such as DHCP, ARP, L2,
L3 Security Groups continue to operate between the existing
VMs eventually after the Virtual Switches have finished
rebooting.

The test also validates that new network service operations
(creating a new VM in the existing L2/L3 network or in a new
network, etc.) are operational after the Virtual Switches
have recovered from a failure.

	test method

	This testcase first checks if the already configured
DHCP/ARP/L2/L3/SNAT connectivity is proper. After
it fails and restarts again the VSwitch services which are
running on both OpenStack compute nodes, and then checks if
already configured DHCP/ARP/L2/L3/SNAT connectivity is not
permanently impacted (even if there are some packet
loss events) between VMs and the system is able to execute
new virtual network operations once the Vswitch services
are restarted and have been fully recovered

	attackers

	In this test case, two attackers called “kill-process” are
needed. These attackers include three parameters:

	fault_type: which is used for finding the attacker’s
scripts. It should be set to ‘kill-process’ in this test

	process_name: should be set to the name of the Vswitch
process

	host: which is the name of the compute node where the
Vswitch process is running

	e.g. -fault_type: “kill-process”
	-process_name: “openvswitch”
-host: node1

	monitors

	This test case utilizes two monitors of type “ip-status”
and one monitor of type “process” to track the following
conditions:

	“ping_same_network_l2”: monitor ICMP traffic between
VMs in the same Neutron network

	“ping_external_snat”: monitor ICMP traffic from VMs to
an external host on the Internet to verify SNAT
functionality.

	“Vswitch process monitor”: a monitor checking the
state of the specified Vswitch process. It measures
the recovery time of the given process.

Monitors of type “ip-status” use the “ping” utility to
verify reachability of a given target IP.

	operations

	
	In this test case, the following operations are needed:
	
	“nova-create-instance-in_network”: create a VM instance
in one of the existing Neutron network.

	metrics

	
	In this test case, there are two metrics:
	
	process_recover_time: which indicates the maximun
time (seconds) from the process being killed to
recovered

	outage_time: measures the total time in which
monitors were failing in their tasks (e.g. total time of
Ping failure)

	test tool

	Developed by the project. Please see folder:
“yardstick/benchmark/scenarios/availability/ha_tools”

	references

	none

	configuration

	
	This test case needs two configuration files:
	
	test case file: opnfv_yardstick_tc093.yaml

	Attackers: see above “attackers” description

	monitor_time: which is the time (seconds) from
starting to stoping the monitors

	Monitors: see above “monitors” discription

	SLA: see above “metrics” description

	POD file: pod.yaml The POD configuration should record
on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

	test sequence

	Description and expected result

	pre-action

	
	The Vswitches are set up in both compute nodes.

	One or more Neutron networks are created with two or
more VMs attached to each of the Neutron networks.

	The Neutron networks are attached to a Neutron router
which is attached to an external network towards the
DCGW.

	step 1

	
	Start IP connectivity monitors:
	
	Check the L2 connectivity between the VMs in the same
Neutron network.

	Check connectivity from one VM to an external host on
the Internet to verify SNAT functionality.

Result: The monitor info will be collected.

	step 2

	Start attackers:
SSH connect to the VIM compute nodes and kill the Vswitch
processes

Result: the SDN Vswitch services will be shutdown

	step 3

	Verify the results of the IP connectivity monitors.

Result: The outage_time metric reported by the monitors
is not greater than the max_outage_time.

	step 4

	Restart the SDN Vswitch services.

	step 5

	Create a new VM in the existing Neutron network

	step 6

	
	Verify connectivity between VMs as follows:
	
	Check the L2 connectivity between the previously
existing VM and the newly created VM on the same
Neutron network by sending ICMP messages

	step 7

	Stop IP connectivity monitors after a period of time
specified by “monitor_time”

Result: The monitor info will be aggregated

	step 8

	Verify the IP connectivity monitor results

Result: IP connectivity monitor should not have any packet
drop failures reported

	test verdict

	This test fails if the SLAs are not met or if there is a
test case execution problem. The SLAs are define as follows
for this test:
* SDN Vswitch recovery

	process_recover_time <= 30 sec

	no impact on data plane connectivity during SDN
Vswitch failure and recovery.

	packet_drop == 0

2.16.3.2.1. Yardstick Test Case Description TC027

	IPv6 connectivity between nodes on the tenant network

	test case id

	OPNFV_YARDSTICK_TC027_IPv6 connectivity

	metric

	RTT, Round Trip Time

	test purpose

	To do a basic verification that IPv6 connectivity is within
acceptable boundaries when ipv6 packets travel between hosts
located on same or different compute blades.
The purpose is also to be able to spot trends. Test results,
graphs and similar shall be stored for comparison reasons and
product evolution understanding between different OPNFV
versions and/or configurations.

	configuration

	file: opnfv_yardstick_tc027.yaml

Packet size 56 bytes.
SLA RTT is set to maximum 30 ms.
ipv6 test case can be configured as three independent modules
(setup, run, teardown). if you only want to setup ipv6
testing environment, do some tests as you want, “run_step”
of task yaml file should be configured as “setup”. if you
want to setup and run ping6 testing automatically, “run_step”
should be configured as “setup, run”. and if you have had a
environment which has been setup, you only wan to verify the
connectivity of ipv6 network, “run_step” should be “run”. Of
course, default is that three modules run sequentially.

	test tool

	ping6

Ping6 is normally part of Linux distribution, hence it
doesn’t need to be installed.

	references

	ipv6 [https://wiki.opnfv.org/display/ipv6]

ETSI-NFV-TST001

	applicability

	Test case can be configured with different run step
you can run setup, run benchmark, teardown independently
SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected.

	pre-test
conditions

	The test case image needs to be installed into Glance
with ping6 included in it.

For Brahmaputra, a compass_os_nosdn_ha deploy scenario is
need. more installer and more sdn deploy scenario will be
supported soon

	test sequence

	description and expected result

	step 1

	To setup IPV6 testing environment:
1. disable security group
2. create (ipv6, ipv4) router, network and subnet
3. create VRouter, VM1, VM2

	step 2

	To run ping6 to verify IPV6 connectivity :
1. ssh to VM1
2. Ping6 to ipv6 router from VM1
3. Get the result(RTT) and logs are stored

	step 3

	To teardown IPV6 testing environment
1. delete VRouter, VM1, VM2
2. delete (ipv6, ipv4) router, network and subnet
3. enable security group

	test verdict

	Test should not PASS if any RTT is above the optional SLA
value, or if there is a test case execution problem.

2.16.3.3.1. Yardstick Test Case Description TC028

	KVM Latency measurements

	test case id

	OPNFV_YARDSTICK_TC028_KVM Latency measurements

	metric

	min, avg and max latency

	test purpose

	To evaluate the IaaS KVM virtualization capability with
regards to min, avg and max latency.
The purpose is also to be able to spot trends. Test results,
graphs and similar shall be stored for comparison reasons
and product evolution understanding between different OPNFV
versions and/or configurations.

	configuration

	file: samples/cyclictest-node-context.yaml

	test tool

	Cyclictest

(Cyclictest is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with cyclictest included.)

	references

	Cyclictest [https://rt.wiki.kernel.org/index.php/Cyclictest]

	applicability

	This test case is mainly for kvm4nfv project CI verify.
Upgrade host linux kernel, boot a gust vm update it’s linux
kernel, and then run the cyclictest to test the new kernel
is work well.

	pre-test
conditions

	The test kernel rpm, test sequence scripts and test guest
image need put the right folders as specified in the test
case yaml file.
The test guest image needs with cyclictest included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	The host and guest os kernel is upgraded. Cyclictest is
invoked and logs are produced and stored.

Result: Logs are stored.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16.3.4.1. Yardstick Test Case Description TC040

	Verify Parser Yang-to-Tosca

	test case id

	OPNFV_YARDSTICK_TC040 Verify Parser Yang-to-Tosca

	metric

	
	tosca file which is converted from yang file by Parser

	result whether the output is same with expected outcome

	test purpose

	To verify the function of Yang-to-Tosca in Parser.

	configuration

	file: opnfv_yardstick_tc040.yaml

yangfile: the path of the yangfile which you want to convert
toscafile: the path of the toscafile which is your expected
outcome.

	test tool

	Parser

(Parser is not part of a Linux distribution, hence it
needs to be installed. As an example see the
/yardstick/benchmark/scenarios/parser/parser_setup.sh for
how to install it manual. Of course, it will be installed
and uninstalled automatically when you run this test case
by yardstick)

	references

	Parser [https://wiki.opnfv.org/display/parser]

	applicability

	Test can be configured with different path of yangfile and
toscafile to fit your real environment to verify Parser

	pre-test
conditions

	No POD specific requirements have been identified.
it can be run without VM

	test sequence

	description and expected result

	step 1

	parser is installed without VM, running Yang-to-Tosca module
to convert yang file to tosca file, validating output against
expected outcome.

Result: Logs are stored.

	test verdict

	Fails only if output is different with expected outcome
or if there is a test case execution problem.

2.16.2.27. Yardstick Test Case Description TC074

	Storperf

	test case id

	OPNFV_YARDSTICK_TC074_Storperf

	metric

	Storage performance

	test purpose

	To evaluate and report on the Cinder volume performance.

This testcase integrates with OPNFV StorPerf to measure
block performance of the underlying Cinder drivers. Many
options are supported, and even the root disk (Glance
ephemeral storage can be profiled.

The fundamental concept of the test case is to first fill
the volumes with random data to ensure reported metrics
are indicative of continued usage and not skewed by
transitional performance while the underlying storage
driver allocates blocks.
The metrics for filling the volumes with random data
are not reported in the final results. The test also
ensures the volumes are performing at a consistent level
of performance by measuring metrics every minute, and
comparing the trend of the metrics over the run. By
evaluating the min and max values, as well as the slope of
the trend, it can make the determination that the metrics
are stable, and not fluctuating beyond industry standard
norms.

	configuration

	file: opnfv_yardstick_tc074.yaml

	agent_count: 1 - the number of VMs to be created

	agent_image: “Ubuntu-14.04” - image used for creating VMs

	public_network: “ext-net” - name of public network

	volume_size: 2 - cinder volume size

	block_sizes: “4096” - data block size

	queue_depths: “4” - the number of simultaneous I/Os
to perform at all times

	StorPerf_ip: “192.168.200.2”

	query_interval: 10 - state query interval

	timeout: 600 - maximum allowed job time

	test tool

	Storperf [https://wiki.opnfv.org/display/storperf/Storperf]

StorPerf is a tool to measure block and object storage
performance in an NFVI.

StorPerf is delivered as a Docker container from
https://hub.docker.com/r/opnfv/storperf-master/tags/.

The underlying tool used is FIO, and StorPerf supports
any FIO option in order to tailor the test to the exact
workload needed.

	references

	Storperf [https://wiki.opnfv.org/display/storperf/Storperf]

ETSI-NFV-TST001

	applicability

	Test can be configured with different:

	agent_count

	volume_size

	block_sizes

	queue_depths

	query_interval

	timeout

	target=[device or path]
The path to either an attached storage device
(/dev/vdb, etc) or a directory path (/opt/storperf) that
will be used to execute the performance test. In the case
of a device, the entire device will be used. If not
specified, the current directory will be used.

	workload=[workload module]
If not specified, the default is to run all workloads. The
workload types are:

	rs: 100% Read, sequential data

	ws: 100% Write, sequential data

	rr: 100% Read, random access

	wr: 100% Write, random access

	rw: 70% Read / 30% write, random access

measurements.

	workloads={json maps}
This parameter supercedes the workload and calls the V2.0
API in StorPerf. It allows for greater control of the
parameters to be passed to FIO. For example, running a
random read/write with a mix of 90% read and 10% write
would be expressed as follows:
{“9010randrw”: {“rw”:”randrw”,”rwmixread”: “90”}}
Note: This must be passed in as a string, so don’t forget
to escape or otherwise properly deal with the quotes.

	report= [job_id]
Query the status of the supplied job_id and report on
metrics. If a workload is supplied, will report on only
that subset.

	availability_zone: Specify the availability zone which
the stack will use to create instances.

	volume_type:
Cinder volumes can have different types, for example
encrypted vs. not encrypted.
To be able to profile the difference between the two.

	subnet_CIDR: Specify subnet CIDR of private network

	stack_name: Specify the name of the stack that will be
created, the default: “StorperfAgentGroup”

	volume_count: Specify the number of volumes per
virtual machines

There are default values for each above-mentioned option.

	pre-test
conditions

	If you do not have an Ubuntu 14.04 image in Glance, you will
need to add one.

Storperf is required to be installed in the environment.
There are two possible methods for Storperf installation:

	Run container on Jump Host

	Run container in a VM

Running StorPerf on Jump Host
Requirements:

	Docker must be installed

	Jump Host must have access to the OpenStack Controller
API

	Jump Host must have internet connectivity for
downloading docker image

	Enough floating IPs must be available to match your
agent count

Running StorPerf in a VM
Requirements:

	VM has docker installed

	VM has OpenStack Controller credentials and can
communicate with the Controller API

	VM has internet connectivity for downloading the
docker image

	Enough floating IPs must be available to match your
agent count

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	Yardstick calls StorPerf to create the heat stack with the
number of VMs and size of Cinder volumes specified. The
VMs will be on their own private subnet, and take floating
IP addresses from the specified public network.

	step 2

	Yardstick calls StorPerf to fill all the volumes with
random data.

	step 3

	Yardstick calls StorPerf to perform the series of tests
specified by the workload, queue depths and block sizes.

	step 4

	Yardstick calls StorPerf to delete the stack it created.

	test verdict

	None. Storage performance results are fetched and stored.

2.16.4.1. Yardstick Test Case Description TCXXX

	test case slogan e.g. Network Latency

	test case id

	e.g. OPNFV_YARDSTICK_TC001_NW Latency

	metric

	what will be measured, e.g. latency

	test purpose

	describe what is the purpose of the test case

	configuration

	what .yaml file to use, state SLA if applicable, state
test duration, list and describe the scenario options used in
this TC and also list the options using default values.

	test tool

	e.g. ping

	references

	e.g. RFCxxx, ETSI-NFVyyy

	applicability

	describe variations of the test case which can be
performend, e.g. run the test for different packet sizes

	pre-test
conditions

	describe configuration in the tool(s) used to perform
the measurements (e.g. fio, pktgen), POD-specific
configuration required to enable running the test

	test sequence

	description and expected result

	step 1

	use this to describe tests that require sveveral steps e.g
collect logs.

Result: what happens in this step e.g. logs collected

	step 2

	remove interface

Result: interface down.

	step N

	what is done in step N

Result: what happens

	test verdict

	expected behavior, or SLA, pass/fail criteria

2.16.4.2. Task Template Syntax

2.16.4.2.1. Basic template syntax

A nice feature of the input task format used in Yardstick is that it supports
the template syntax based on Jinja2.
This turns out to be extremely useful when, say, you have a fixed structure of
your task but you want to parameterize this task in some way.
For example, imagine your input task file (task.yaml) runs a set of Ping
scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
-
 type: Ping
 options:
 packetsize: 200
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

context:
 ...

Let’s say you want to run the same set of scenarios with the same runner/
context/sla, but you want to try another packetsize to compare the performance.
The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
-
 type: Ping
 options:
 packetsize: {{packetsize}}
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

context:
 ...

and then pass the argument value for {{packetsize}} when starting a task with
this configuration file.
Yardstick provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either
a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
--task-args'{"packetsize":"200"}'

2.Refer to a file that specifies the argument values (JSON/YAML):

yardstick task start samples/ping-template.yaml --task-args-file args.yaml

2.16.4.2.2. Using the default values

Note that the Jinja2 template syntax allows you to set the default values for
your parameters.
With default values set, your task file will work even if you don’t
parameterize it explicitly while starting a task.
The default values should be set using the {% set … %} clause (task.yaml).
For example:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"
{% set packetsize = packetsize or "100" %}
scenarios:
-
 type: Ping
 options:
 packetsize: {{packetsize}}
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1
 ...

If you don’t pass the value for {{packetsize}} while starting a task, the
default one will be used.

2.16.4.2.3. Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax,
including the mechanism of built-in functions.
As an example, let us make up a task file that will do a block storage
performance test.
The input task file (fio-template.yaml) below uses the Jinja2 for-endfor
construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

 scenarios:
{% for bs in ['4k', '8k', '64k', '1024k'] %}
 {% for rw in ['read', 'write', 'randwrite', 'randread', 'rw'] %}
-
 type: Fio
 options:
 filename: /home/ubuntu/data.raw
 bs: {{bs}}
 rw: {{rw}}
 ramp_time: 10
 host: fio.demo
 runner:
 type: Duration
 duration: 60
 interval: 60

 {% endfor %}
{% endfor %}
context
 ...

2.17. NSB Sample Test Cases

2.17.1. Abstract

This chapter lists available NSB test cases.

2.17.2. NSB PROX Test Case Descriptions

	2.17.2.1. Yardstick Test Case Description: NSB PROX ACL

	2.17.2.2. Yardstick Test Case Description: NSB PROX BNG

	2.17.2.3. Yardstick Test Case Description: NSB PROX BNG_QoS

	2.17.2.4. Yardstick Test Case Description: NSB PROX L2FWD

	2.17.2.5. Yardstick Test Case Description: NSB PROX L3FWD

	2.17.2.6. Yardstick Test Case Description: NSB PROX MPLS Tagging

	2.17.2.7. Yardstick Test Case Description: NSB PROX Packet Buffering

	2.17.2.8. Yardstick Test Case Description: NSB PROX Load Balancer

	2.17.2.9. Yardstick Test Case Description: NSB PROX VPE

	2.17.2.10. Yardstick Test Case Description: NSB PROX LwAFTR

	2.17.2.11. Yardstick Test Case Description: NSB EPC DEFAULT BEARER

	2.17.2.12. Yardstick Test Case Description: NSB EPC DEDICATED BEARER

	2.17.2.13. Yardstick Test Case Description: NSB EPC SAEGW RELOCATION

	2.17.2.14. Yardstick Test Case Description: NSB EPC NETWORK SERVICE REQUEST

	2.17.2.15. Yardstick Test Case Description: NSB EPC UE SERVICE REQUEST

	2.17.2.16. Yardstick Test Case Description: NSB vFW RFC2544

	2.17.2.17. Yardstick Test Case Description: NSB vFW RFC2544 (correlated)

	2.17.2.18. Yardstick Test Case Description: NSB vFW RFC3511 (HTTP)

	2.17.2.19. Yardstick Test Case Description: NSB VPP IPSEC

	2.17.2.20. Yardstick Test Case Description: NSB VIMS

	2.17.2.21. Yardstick Test Case Description: NSB vCMTS

2.17.2.1. Yardstick Test Case Description: NSB PROX ACL

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_acl-{port_num}

	context = baremetal or heat_context;

	port_num = 2 or 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	This test allows to measure how well the SUT can exploit
structures in the list of ACL rules.
The ACL rules are matched against a 7-tuple of the input
packet: the regular 5-tuple and two VLAN tags.
The rules in the rule set allow the packet to be forwarded
and the rule set contains a default “match all” rule.

The KPI is measured with the rule set that has a moderate
number of rules with moderate similarity between the rules &
the fraction of rules that were used.

The ACL test cases are implemented to run in baremetal
and heat context for 2 port and 4 port configuration.

	configuration

	The ACL test cases are listed below:

	tc_prox_baremetal_acl-2.yaml

	tc_prox_baremetal_acl-4.yaml

	tc_prox_heat_context_acl-2.yaml

	tc_prox_heat_context_acl-4.yaml

Test duration is set as 300sec for each test.
Packet size set as 64 bytes in traffic profile.
These can be configured

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	This PROX ACL test cases can be configured with different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(ACL workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 64 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.2. Yardstick Test Case Description: NSB PROX BNG

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_bng-{port_num}

	context = baremetal or heat_context;

	port_num = 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The BNG workload converts packets from QinQ to GRE tunnels,
handles routing and adds/removes MPLS tags.
This use case simulates a realistic and complex application.
The number of users is 32K per port and the number of routes
is 8K.

The BNG test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

	configuration

	The BNG test cases are listed below:

	tc_prox_baremetal_bng-2.yaml

	tc_prox_baremetal_bng-4.yaml

	tc_prox_heat_context_bng-2.yaml

	tc_prox_heat_context_bng-4.yaml

Test duration is set as 300sec for each test.
The minimum packet size for BNG test is 78 bytes. This is
set in the BNG traffic profile and can be configured to use
a higher packet size for the test.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	The PROX BNG test cases can be configured with different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(BNG workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 78 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.3. Yardstick Test Case Description: NSB PROX BNG_QoS

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_bng_qos-{port_num}

	context = baremetal or heat_context;

	port_num = 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The BNG+QoS workload converts packets from QinQ to GRE
tunnels, handles routing and adds/removes MPLS tags and
performs a QoS.
This use case simulates a realistic and complex application.
The number of users is 32K per port and the number of routes
is 8K.

The BNG_QoS test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

	configuration

	The BNG_QoS test cases are listed below:

	tc_prox_baremetal_bng_qos-2.yaml

	tc_prox_baremetal_bng_qos-4.yaml

	tc_prox_heat_context_bng_qos-2.yaml

	tc_prox_heat_context_bng_qos-4.yaml

Test duration is set as 300sec for each test.
The minumum packet size for BNG_QoS test is 78 bytes. This
is set in the bng_qos traffic profile and can be configured
to use a higher packet size for the test.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	This PROX BNG_QoS test cases can be configured with
different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(BNG_QoS workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 78 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.4. Yardstick Test Case Description: NSB PROX L2FWD

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_l2fwd-{port_num}

	context = baremetal or heat_context;

	port_num = 2 or 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The PROX L2FWD test has 3 types of test cases:
L2FWD: The application will take packets in from one port
and forward them unmodified to another port
L2FWD_Packet_Touch: The application will take packets in
from one port, update src and dst MACs and forward them to
another port.
L2FWD_Multi_Flow: The application will take packets in
from one port, update src and dst MACs and forward them to
another port. This test case exercises the softswitch
with 200k flows.

The above test cases are implemented for baremetal and heat
context for 2 port and 4 port configuration.

	configuration

	The L2FWD test cases are listed below:

	tc_prox_baremetal_l2fwd-2.yaml

	tc_prox_baremetal_l2fwd-4.yaml

	tc_prox_baremetal_l2fwd_pktTouch-2.yaml

	tc_prox_baremetal_l2fwd_pktTouch-4.yaml

	tc_prox_baremetal_l2fwd_multiflow-2.yaml

	tc_prox_baremetal_l2fwd_multiflow-4.yaml

	tc_prox_heat_context_l2fwd-2.yaml

	tc_prox_heat_context_l2fwd-4.yaml

	tc_prox_heat_context_l2fwd_pktTouch-2.yaml

	tc_prox_heat_context_l2fwd_pktTouch-4.yaml

	tc_prox_heat_context_l2fwd_multiflow-2.yaml

	tc_prox_heat_context_l2fwd_multiflow-4.yaml

Test duration is set as 300sec for each test.
Packet size set as 64 bytes in traffic profile
These can be configured

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	The PROX L2FWD test cases can be configured with different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(L2FWD workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 64 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.5. Yardstick Test Case Description: NSB PROX L3FWD

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_l3fwd-{port_num}

	context = baremetal or heat_context;

	port_num = 2 or 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The PROX L3FWD application performs basic routing of packets
with LPM based look-up method.

The L3FWD test cases are implemented for baremetal and heat
context for 2 port and 4 port configuration.

	configuration

	The L3FWD test cases are listed below:

	tc_prox_baremetal_l3fwd-2.yaml

	tc_prox_baremetal_l3fwd-4.yaml

	tc_prox_heat_context_l3fwd-2.yaml

	tc_prox_heat_context_l3fwd-4.yaml

Test duration is set as 300sec for each test.
The minimum packet size for L3FWD test is 64 bytes. This is
set in the traffic profile and can be configured to use
a higher packet size for the test.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	This PROX L3FWD test cases can be configured with different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(L3FWD workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packet to the VNF. If the number of dropped
packets is more than the tolerated loss the line rate
or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 64 byte
packets with an accepted minimal packet loss for the default
configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.6. Yardstick Test Case Description: NSB PROX MPLS Tagging

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_mpls_tagging-{port_num}

	context = baremetal or heat_context;

	port_num = 2 or 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The PROX MPLS Tagging test will take packets in from one
port add an MPLS tag and forward them to another port.
While forwarding packets in other direction MPLS tags will
be removed.

The MPLS test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

	configuration

	The MPLS Tagging test cases are listed below:

	tc_prox_baremetal_mpls_tagging-2.yaml

	tc_prox_baremetal_mpls_tagging-4.yaml

	tc_prox_heat_context_mpls_tagging-2.yaml

	tc_prox_heat_context_mpls_tagging-4.yaml

Test duration is set as 300sec for each test.
The minimum packet size for MPLS test is 68 bytes. This is
set in the traffic profile and can be configured to use
higher packet sizes.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	The PROX MPLS Tagging test cases can be configured with
different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(MPLS workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 68 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.7. Yardstick Test Case Description: NSB PROX Packet Buffering

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_buffering-{port_num}

	context = baremetal or heat_context

	port_num = 1

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	This test measures the impact of the condition when packets
get buffered, thus they stay in memory for the extended
period of time, 125ms in this case.

The Packet Buffering test cases are implemented to run in
baremetal and heat context.

The test runs only on the first port of the SUT.

	configuration

	The Packet Buffering test cases are listed below:

	tc_prox_baremetal_buffering-1.yaml

	tc_prox_heat_context_buffering-1.yaml

Test duration is set as 300sec for each test.
The minimum packet size for Buffering test is 64 bytes. This
is set in the traffic profile and can be configured to use
a higher packet size for the test.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	
	The PROX Packet Buffering test cases can be configured with
	different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(Packet Buffering workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI in this test is the maximum number of packets that
can be forwarded given the requirement that the latency of
each packet is at least 125 millisecond.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.8. Yardstick Test Case Description: NSB PROX Load Balancer

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_lb-{port_num}

	context = baremetal or heat_context

	port_num = 4

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The applciation transmits packets on one port and revieves
them on 4 ports.
The conventional 5-tuple is used in this test as it requires
some extraction steps and allows defining enough distinct
values to find the performance limits.

The load is increased (adding more ports if needed) while
packets are load balanced using a hash table of 8M entries

The number of packets per second that can be forwarded
determines the KPI. The default packet size is 64 bytes.

	configuration

	The Load Balancer test cases are listed below:

	tc_prox_baremetal_lb-4.yaml

	tc_prox_heat_context_lb-4.yaml

Test duration is set as 300sec for each test.
Packet size set as 64 bytes in traffic profile.
These can be configured

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	
	The PROX Load Balancer test cases can be configured with
	different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it. The test need multi-queue enabled in Glance image.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(Load Balancer workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 78 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.9. Yardstick Test Case Description: NSB PROX VPE

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_vpe-{port_num}

	context = baremetal or heat_context;

	port_num = 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The PROX VPE test handles packet processing, routing, QinQ
encapsulation, flows, ACL rules, adds/removes MPLS tagging
and performs QoS before forwarding packet to another port.
The reverse applies to forwarded packets in the other
direction.

The VPE test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

	configuration

	The VPE test cases are listed below:

	tc_prox_baremetal_vpe-4.yaml

	tc_prox_heat_context_vpe-4.yaml

Test duration is set as 300sec for each test.
The minimum packet size for VPE test is 68 bytes. This is
set in the traffic profile and can be configured to use
higher packet sizes.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	The PROX VPE test cases can be configured with
different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(VPE workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 68 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.10. Yardstick Test Case Description: NSB PROX LwAFTR

	NSB PROX test for NFVI characterization

	test case id

	tc_prox_{context}_lw_aftr-{port_num}

	context = baremetal or heat_context;

	port_num = 4;

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	The PROX LW_AFTR test will take packets in from one
port and remove the ipv6 encapsulation and forward them to
another port. While forwarded packets in other direction
will be encapsulated in an ipv6 header.

The lw_aftr test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

	configuration

	The LW_AFTR test cases are listed below:

	tc_prox_baremetal_lw_aftr-4.yaml

	tc_prox_heat_context_lw_aftr-4.yaml

Test duration is set as 300sec for each test.
The minimum packet size for MPLS test is 68 bytes. This is
set in the traffic profile and can be configured to use
higher packet sizes.

	test tool

	PROX
PROX is a DPDK application that can simulate VNF workloads
and can generate traffic and used for NFVI characterization

	applicability

	The PROX lwAFTR test cases can be configured with
different:

	packet sizes;

	test durations;

	tolerated loss;

Default values exist.

	pre-test
conditions

	For Openstack test case image (yardstick-samplevnfs) needs
to be installed into Glance with Prox and Dpdk included in
it.

For Baremetal tests cases Prox and Dpdk must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(LW_AFTR workload) based on the test flavor.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNF. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 86 bytes
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the dpdk ports.

In Heat test: Two host VMs are deleted on test completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.11. Yardstick Test Case Description: NSB EPC DEFAULT BEARER

	NSB EPC default bearer test case

	test case id

	tc_epc_default_bearer_landslide_{dmf_setup}

	dmf_setup: single or multi dmf test session setup;

	metric

	All metrics provided by Spirent Landslide traffic generator

	test purpose

	The Spirent Landslide product provides one box solution which
allows to fully emulate all EPC network nodes including
mobile users, network host and generate control and data
plane traffic.

This test allows to check processing capability of EPC under
different levels of load (number of subscriber, generated
traffic throughput) for case when only one default bearer is
using for transferring traffic from UE to Network.

It’s easy to replace emulated node or multiple nodes in test
topology with real node or corresponding vEPC VNF as DUT and
check it’s processing capabilities under specific test case
load conditions.

	configuration

	The EPC default bearer test cases are listed below:

	tc_epc_default_bearer_create_landslide.yaml

	tc_epc_default_bearer_create_landslide_multi_dmf.yaml

Test duration:

	is set as 60sec (specified in test session profile);

Traffic type:

	UDP - for single DMF test case;

	UDP and TCP - for multi DMF test case;

Packet sizes:

	512 bytes for UDP packets;

	1518 bytes for TCP packets;

Traffic transaction rate:

	5 trans/s.;

Number of mobile subscribers:

	20000;

Number of default bearers per subscriber:

	
	

The above fields and values are the main options used for the
test case. Other configurable options could be found in test
session profile yaml file. All these options have default
values which can be overwritten in test case file.

	test tool

	Spirent Landslide

The Spirent Landslide is a tool for functional & performance
testing of different types of mobile networks. It emulates
real-world control and data traffic of mobile subscribers
moving through virtualized EPC network.
Detailed description of Spirent Landslide product could be
found here: https://www.spirent.com/Products/Landslide

	applicability

	This EPC DEFAULT BEARER test cases can be configured with
different:

	packet sizes;

	traffic transaction rate;

	number of subscribers sessions;

	number of default bearers per subscriber;

	subscribers connection rate;

	subscribers disconnection rate;

	DMF (traffic profile);

	enable/disable Fireball DMF threading model that provides
optimized performance;

Default values exist.

	references

	ETSI-NFV-TST001

3GPP TS 32.455

	pre-test
conditions

	
	All Spirent Landslide dependencies are installed (detailed
installation steps are described in Chapter 13-
nsb-installation.rst and 14-nsb-operation.rst file for NSB
Spirent Landslide vEPC tests;

	The pod.yaml file contains all necessary information
(TAS VM IP address, NICs, emulated SUTs and Test Nodes
parameters (names, types, ip addresses, etc.).

	test sequence

	description and expected result

	step 1

	Spirent Landslide components are running on the hosts
specified in the pod file.

	step 2

	Yardstick is connected with Spirent Landslide Test
Administration Server (TAS) by TCL and REST API. The test
will resolve the topology and instantiate all emulated EPC
network nodes.

	step 3

	Test scenarios run, which performs the following steps:

	Start emulated EPC network nodes;

	Establish subscribers connections to EPC network (only
default bearers are established);

	Create the sessions and transmit traffic through EPC
network nodes during the specified traffic duration time;

	Disconnect subscribers at the end of the test.

	step 4

	During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

	test verdict

	The test case will create the test session in Spirent
Landslide with the test case parameters and store the
results in the database for benchmarking purposes. The aim
is only to collect all the metrics that are provided by
Spirent Landslide product for each test specific scenario.

2.17.2.12. Yardstick Test Case Description: NSB EPC DEDICATED BEARER

	NSB EPC dedicated bearer test case

	test case id

	tc_epc_{initiator}_dedicated_bearer_landslide

	initiator: dedicated bearer creation initiator side could
be UE (ue) or Network (network).

	metric

	All metrics provided by Spirent Landslide traffic generator

	test purpose

	The Spirent Landslide product provides one box solution which
allows to fully emulate all EPC network nodes including
mobile users, network host and generate control and data
plane traffic.

This test allows to check processing capability under
different levels of load (number of subscriber, generated
traffic throughput, etc.) for case when default and dedicated
bearers are creating and using for traffic transferring.

It’s easy to replace emulated node or multiple nodes in test
topology with real node or corresponding vEPC VNF as DUT and
check it’s processing capabilities under specific test case
load conditions.

	configuration

	The EPC dedicated bearer test cases are listed below:

	tc_epc_ue_dedicated_bearer_create_landslide.yaml

	tc_epc_network_dedicated_bearer_create_landslide.yaml

Test duration:

	is set as 60sec (specified in test session profile);

Traffic type:

	UDP;

Packet sizes:

	512 bytes;

Traffic transaction rate:

	5 trans/s.;

Number of mobile subscribers:

	20000;

Number of default bearers per subscriber:

	1;

Number of dedicated bearers per default bearer:

	
	

The above fields and values are the main options used for the
test case. Other configurable options could be found in test
session profile yaml file. All these options have default
values which can be overwritten in test case file.

	test tool

	Spirent Landslide

The Spirent Landslide is a tool for functional and
performance testing of different types of mobile networks.
It emulates real-world control and data traffic of mobile
subscribers moving through virtualized EPC network.
Detailed description of Spirent Landslide product could be
found here: https://www.spirent.com/Products/Landslide

	applicability

	This EPC DEDICATED BEARER test cases can be configured with
different:

	packet sizes;

	traffic transaction rate;

	number of subscribers sessions;

	number of default bearers per subscriber;

	number of dedicated bearers per default;

	subscribers connection rate;

	subscribers disconnection rate;

	dedicated bearers activation timeout;

	DMF (traffic profile);

	enable/disable Fireball DMF threading model that provides
optimized performance;

Default values exist.

	references

	ETSI-NFV-TST001

3GPP TS 32.455

	pre-test
conditions

	
	All Spirent Landslide dependencies need to be installed.
The steps are described in NSB installation chapter for the
Spirent Landslide vEPC tests;

	The pod.yaml file contains all necessary information (TAS
VM IP address, NICs, emulated SUTs and Test Nodes
parameters (names, types, ip addresses, etc.).

	test sequence

	description and expected result

	step 1

	Spirent Landslide components are running on the hosts
specified in the pod file.

	step 2

	Yardstick is connected with Spirent Landslide Test
Administrator Server (TAS) by TCL and REST API. The test
will resolve the topology and instantiate all emulated EPC
network nodes.

	step 3

	Test scenarios run, which performs the following steps:

	Start the emulated EPC network nodes;

	Establish the subscribers connections to EPC network
(default bearers);

	Establish the number of dedicated bearers as per per
default bearer for each subscriber;

	Create the sessions and transmit traffic through EPC
network nodes during the specified traffic duration time;

	Disconnect dedicated bearers;

	Disconnect subscribers at the end of the test.

	step 4

	During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

	test verdict

	The test case will create the test session in Spirent
Landslide with the test case parameters and store the results
in the database for benchmarking purposes. The aim is only
to collect all the metrics that are provided by Spirent
Landslide product for each test specific scenario.

2.17.2.13. Yardstick Test Case Description: NSB EPC SAEGW RELOCATION

	NSB EPC SAEGW throughput with relocation test case

	test case id

	tc_epc_saegw_tput_relocation_landslide

	metric

	All metrics provided by Spirent Landslide traffic generator

	test purpose

	The Spirent Landslide product provides one box solution which
allows to fully emulate all EPC network nodes including
mobile users, network host and generate control and data
plane traffic.

This test allows to check processing capability of EPC
handling large amount of subscribers X2 handovers between
different eNBs while UEs are sending traffic.

It’s easy to replace emulated node or multiple nodes in test
topology with real node or corresponding vEPC VNF as DUT and
check it’s processing capabilities under specific test case
load conditions.

	configuration

	The EPC SAEGW throughput with relocation tests are listed
below:

	tc_epc_saegw_tput_relocation_landslide.yaml

Test duration:

	is set as 60sec (specified in test session profile);

Traffic type:

	UDP;

Packet sizes:

	512 bytes;

Traffic transaction rate:

	5 trans/s.;

Number of mobile subscribers:

	20000;

Number of default bearers per subscriber:

	1;

Handover type:

	X2 handover;

Mobility time (timeout after sessions were established after
which handover will start):

	10000ms;

Handover start type:

	When all sessions started;

Mobility mode:

	Single handoff;

Mobility Rate:

	120 subscribers/s.

The above fields and values are the main options used for the
test case. Other configurable options could be found in test
session profile yaml file. All these options have default
values which can be overwritten in test case file.

	test tool

	Spirent Landslide

The Spirent Landslide is a tool for functional & performance
testing of different types of mobile networks. It emulates
real-world control and data traffic of mobile subscribers
moving through virtualized EPC network.
Detailed description of Spirent Landslide product could be
found here: https://www.spirent.com/Products/Landslide

	applicability

	This EPC UE SERVICE REQUEST test cases can be configured with
different:

	packet sizes;

	traffic transaction rate;

	number of subscribers sessions;

	handover type;

	mobility rate;

	mobility time;

	mobility mode;

	handover start condition;

	subscribers disconnection rate;

Default values exist.

	references

	ETSI-NFV-TST001

3GPP TS 32.455

	pre-test
conditions

	
	All Spirent Landslide dependencies are installed (detailed
installation steps are described in Chapter 13-
nsb-installation.rst and 14-nsb-operation.rst file for NSB
Spirent Landslide vEPC tests;

	The pod.yaml file contains all necessary information
(TAS VM IP address, NICs, emulated SUTs and Test Nodes
parameters (names, types, ip addresses, etc.).

	test sequence

	description and expected result

	step 1

	Spirent Landslide components are running on the hosts
specified in the pod file.

	step 2

	Yardstick is connected with Spirent Landslide Test
Administration Server (TAS) by TCL and REST API. The test
will resolve the topology and instantiate all emulated EPC
network nodes.

	step 3

	Test scenarios run, which performs the following steps:

	Start emulated EPC network nodes;

	Establish subscribers connections to EPC network (default
bearers);

	Start run traffic;

	After specified in test case mobility timeout, start
handover process on specified mobility rate;

	Disconnect subscribers at the end of the test.

	step 4

	During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

	test verdict

	The test case will create the test session in Spirent
Landslide with the test case parameters and store the
results in the database for benchmarking purposes. The aim
is only to collect all the metrics that are provided by
Spirent Landslide product for each test specific scenario.

2.17.2.14. Yardstick Test Case Description: NSB EPC NETWORK SERVICE REQUEST

	NSB EPC network service request test case

	test case id

	tc_epc_network_service_request_landslide

	initiator: service request initiator side could be UE (ue)
or Network (network).

	metric

	All metrics provided by Spirent Landslide traffic generator

	test purpose

	The Spirent Landslide product provides one box solution which
allows to fully emulate all EPC network nodes including
mobile users, network host and generate control and data
plane traffic.

This test covers case of network initiated service request &
allows to check processing capabilities of EPC handling high
amount of continuous Downlink Data Notification messages from
network to UEs which are in Idle state.

It’s easy to replace emulated node or multiple nodes in test
topology with real node or corresponding vEPC VNF as DUT and
check it’s processing capabilities under specific test case
load conditions.

	configuration

	The EPC network service request test cases are listed below:

	tc_epc_network_service_request_landslide.yaml

Test duration:

	is set as 60sec (specified in test session profile);

Traffic type:

	UDP;

Packet sizes:

	512 bytes;

Traffic transaction rate:

	0.1 trans/s.;

Number of mobile subscribers:

	20000;

Number of default bearers per subscriber:

	1;

Idle entry time (timeout after which UE goes to Idle state):

	5s;

Traffic start delay:

	1000ms.

The above fields and values are the main options used for the
test case. Other configurable options could be found in test
session profile yaml file. All these options have default
values which can be overwritten in test case file.

	test tool

	Spirent Landslide

The Spirent Landslide is a tool for functional & performance
testing of different types of mobile networks. It emulates
real-world control and data traffic of mobile subscribers
moving through virtualized EPC network.
Detailed description of Spirent Landslide product could be
found here: https://www.spirent.com/Products/Landslide

	applicability

	This EPC NETWORK SERVICE REQUEST test case can be configured
with different:

	packet sizes;

	traffic transaction rate;

	number of subscribers sessions;

	number of default bearers per subscriber;

	subscribers connection rate;

	subscribers disconnection rate;

	timeout after which UE goes to Idle state;

	Traffic start delay;

Default values exist.

	references

	ETSI-NFV-TST001

3GPP TS 32.455

	pre-test
conditions

	
	All Spirent Landslide dependencies are installed (detailed
installation steps are described in Chapter 13-
nsb-installation.rst and 14-nsb-operation.rst file for NSB
Spirent Landslide vEPC tests;

	The pod.yaml file contains all necessary information
(TAS VM IP address, NICs, emulated SUTs and Test Nodes
parameters (names, types, ip addresses, etc.).

	test sequence

	description and expected result

	step 1

	Spirent Landslide components are running on the hosts
specified in the pod file.

	step 2

	Yardstick is connected with Spirent Landslide Test
Administration Server (TAS) by TCL and REST API. The test
will resolve the topology and instantiate all emulated EPC
network nodes.

	step 3

	Test scenarios run, which performs the following steps:

	Start emulated EPC network nodes;

	Establish subscribers connections to EPC network (default
bearers);

	Switch UE to Idle state after specified in test case
timeout;

	Send Downlink Data Notification from network to UE, that
will return UE to active state. This process is continuous
and during whole test run UEs will be going to Idle state
and will be switched back to active state after Downlink
Data Notification was received;

	Disconnect subscribers at the end of the test.

	step 4

	During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

	test verdict

	The test case will create the test session in Spirent
Landslide with the test case parameters and store the
results in the database for benchmarking purposes. The aim
is only to collect all the metrics that are provided by
Spirent Landslide product for each test specific scenario.

2.17.2.15. Yardstick Test Case Description: NSB EPC UE SERVICE REQUEST

	NSB EPC UE service request test case

	test case id

	tc_epc_{initiator}_service_request_landslide

	initiator: service request initiator side could be UE (ue)
or Network (nw).

	metric

	All metrics provided by Spirent Landslide traffic generator

	test purpose

	The Spirent Landslide product provides one box solution which
allows to fully emulate all EPC network nodes including
mobile users, network host and generate control and data
plane traffic.

This test allows to check processing capabilities of EPC
under high user connections rate and traffic load for case
when UEs initiates service request (UE initiates bearer
modification request to provide dedicated bearer for new
type of traffic)

It’s easy to replace emulated node or multiple nodes in test
topology with real node or corresponding vEPC VNF as DUT and
check it’s processing capabilities under specific test case
load conditions.

	configuration

	The EPC ue service request test cases are listed below:

	tc_epc_ue_service_request_landslide.yaml

Test duration:

	is set as 60sec (specified in test session profile);

Traffic type:

	UDP;

Packet sizes:

	512 bytes;

Traffic transaction rate:

	5 trans/s.;

Number of mobile subscribers:

	20000;

Number of default bearers per subscriber:

	1;

Number of dedicated bearers per default bearer:

	
	

TFT settings for dedicated bearers:

	TFT configured to filter TCP traffic (Protocol ID 6)

Modified TFT settings:

	Create new TFT to filter UDP traffic (Protocol ID 17) from
2002 local port and 2003 remote port;

Modified QoS settings:

	Set QCI 5 for dedicated bearers;

The above fields and values are the main options used for the
test case. Other configurable options could be found in test
session profile yaml file. All these options have default
values which can be overwritten in test case file.

	test tool

	Spirent Landslide

The Spirent Landslide is a tool for functional & performance
testing of different types of mobile networks. It emulates
real-world control and data traffic of mobile subscribers
moving through virtualized EPC network.
Detailed description of Spirent Landslide product could be
found here: https://www.spirent.com/Products/Landslide

	applicability

	This EPC UE SERVICE REQUEST test case can be configured with
different:

	packet sizes;

	traffic transaction rate;

	number of subscribers sessions;

	number of default bearers per subscriber;

	number of dedicated bearers per default;

	subscribers connection rate;

	subscribers disconnection rate;

	dedicated bearers activation timeout;

	DMF (traffic profile);

	enable/disable Fireball DMF threading model that provides
optimized performance;

	Starting TFT settings for dedicated bearers;

	Modified TFT settings for dedicated bearers;

	Modified QoS settings for dedicated bearers;

Default values exist.

	references

	ETSI-NFV-TST001

3GPP TS 32.455

	pre-test
conditions

	
	All Spirent Landslide dependencies are installed (detailed
installation steps are described in Chapter 13-
nsb-installation.rst and 14-nsb-operation.rst file for NSB
Spirent Landslide vEPC tests;

	The pod.yaml file contains all necessary information
(TAS VM IP address, NICs, emulated SUTs and Test Nodes
parameters (names, types, ip addresses, etc.).

	test sequence

	description and expected result

	step 1

	Spirent Landslide components are running on the hosts
specified in the pod file.

	step 2

	Yardstick is connected with Spirent Landslide Test
Administration Server (TAS) by TCL and REST API. The test
will resolve the topology and instantiate all emulated EPC
network nodes.

	step 3

	Test scenarios run, which performs the following steps:

	Start emulated EPC network nodes;

	Establish subscribers connections to EPC network (default
bearers);

	Establish the number of dedicated bearer as specified in
the test case as per default bearer for each subscriber;

	start run users traffic through EPC network nodes;

	During traffic is running, send bearer modification request
after specified in test case timeout;

	Disconnect dedicated bearers;

	Disconnect subscribers at the end of the test.

	step 4

	During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

	test verdict

	The test case will create the test session in Spirent
Landslide with the test case parameters and store the
results in the database for benchmarking purposes. The aim
is only to collect all the metrics that are provided by
Spirent Landslide product for each test specific scenario.

2.17.2.16. Yardstick Test Case Description: NSB vFW RFC2544

	NSB vFW test for VNF characterization

	test case id

	tc_{context}_rfc2544_ipv4_1rule_1flow_{pkt_size}_{tg_type}

	
	context = baremetal, heat, heat_external, ovs, sriov
	heat_sriov_external contexts;

	
	tg_type = ixia (context != heat,heat_sriov_external),
	trex;

	
	pkt_size = 64B - all contexts;
	128B, 256B, 512B, 1024B, 1280B, 1518B -
(context = heat, tg_type = ixia)

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	TG Latency;

	VNF Packets Out;

	VNF Packets In;

	VNF Packets Fwd;

	Dropped packets;

	test purpose

	The VFW RFC2544 tests measure performance characteristics of
the SUT (multiple ports) and sends UDP bidirectional traffic
from all TG ports to SampleVNF vFW application. The
application forwards received traffic based on rules
provided by the user in the TC configuration and default
rules created by vFW to send traffic from uplink ports to
downlink and voice versa.

	configuration

	The 2 ports RFC2544 test cases are listed below:

	tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

	tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_1024B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_1280B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_128B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_1518B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_256B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_512B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

	tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

	tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_64B_trex.
yaml

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

	tc_ovs_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

	tc_ovs_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

	tc_sriov_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

	tc_sriov_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

The 4 ports RFC2544 test cases are listed below:

	tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia_4port.yaml

	tc_tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex_4port.
yaml

	tc_tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_trex_4
port.yaml

	tc_tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_4port.yaml

The scale-up RFC2544 test cases are listed below:

	tc_tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale-up.yaml

The scale-out RFC2544 test cases are listed below:

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale_out.yaml

Test duration is set as 30 sec for each test and default
number of rules are applied. These can be configured

	test tool

	The vFW is a DPDK application that performs basic filtering
for malformed packets and dynamic packet filtering of
incoming packets using the connection tracker library.

	applicability

	The vFW RFC2544 test cases can be configured with different:

	packet sizes;

	test duration;

	tolerated loss;

	traffic flows;

	rules;

Default values exist.

	pre-test
conditions

	For OpenStack test case image (yardstick-samplevnf) needs
to be installed into Glance with vFW and DPDK included in
it (NSB install).

For Baremetal tests cases vFW and DPDK must be installed on
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information.

For standalone (SA) SRIOV/OvS test cases the
yardstick-samplevnf image needs to be installed on hosts and
pod.yaml file must be provided with necessary system, NIC
information.

	test sequence

	Description and expected result

	step 1

	For Baremetal test: The TG (except IXIA) and VNF are started
on the hosts based on the pod file.

For Heat test: Two host VMs are booted, as Traffic generator
and VNF(vFW) based on the test flavor. In case of scale-out
scenario the multiple VNF VMs will be started.

For Heat external test: vFW VM is booted and TG (except IXIA)
generator is started on the external host based on the pod
file. In case of scale-out scenario the multiple VNF VMs
will be deployed.

For Heat SRIOV external test: vFW VM is booted with network
interfaces of direct type which are mapped to VFs that are
available to OpenStack. TG (except IXIA) is started on the
external host based on the pod file. In case of scale-out
scenario the multiple VNF VMs will be deployed.

For SRIOV test: VF ports are created on host’s PFs specified
in the TC file and VM is booed using those ports and image
provided in the configuration. TG (except IXIA) is started
on other host connected to VNF machine based on the pod
file. The vFW is started in the booted VM. In case of
scale-out scenario the multiple VNF VMs will be created.

For OvS-DPDK test: OvS DPDK switch is started and bridges
are created with ports specified in the TC file. DPDK vHost
ports are added to corresponding bridge and VM is booed
using those ports and image provided in the configuration.
TG (except IXIA) is started on other host connected to VNF
machine based on the pod file. The vFW is started in the
booted VM. In case of scale-out scenario the multiple VNF
VMs will be deployed.

	step 2

	Yardstick is connected with the TG and VNF by using ssh (in
case of IXIA TG is connected via TCL interface). The test
will resolve the topology and instantiate all VNFs
and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNFs. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for different
packet size with an accepted minimal packet loss for the
default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the DPDK ports.

In Heat test: All VNF VMs and TG are deleted on test
completion.

In SRIOV test: The deployed VM with vFW is destroyed on the
host and TG (exclude IXIA) is stopped.

In Heat SRIOV test: The deployed VM with vFW is destroyed,
VFs are released and TG (exclude IXIA) is stopped.

In OvS test: The deployed VM with vFW is destroyed on the
host and OvS DPDK switch is stopped and ports are unbinded.
The TG (exclude IXIA) is stopped.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.17. Yardstick Test Case Description: NSB vFW RFC2544 (correlated)

	NSB vFW test for VNF characterization using correlated traffic

	test case id

	tc_{context}_rfc2544_ipv4_1rule_1flow_64B_trex_corelated

	context = baremetal, heat

	metric

	
	Network Throughput;

	TG Packets Out;

	TG Packets In;

	TG Latency;

	VNF Packets Out;

	VNF Packets In;

	VNF Packets Fwd;

	Dropped packets;

NOTE: For correlated TCs the TG metrics are available on
uplink ports.

	test purpose

	The VFW RFC2544 correlated tests measure performance
characteristics of the SUT (multiple ports) and sends UDP
traffic from uplink TG ports to SampleVNF vFW application.
The application forwards received traffic from uplink ports
to downlink ports based on rules provided by the user in the
TC configuration and default rules created by vFW. The VNF
downlink traffic is received by another UDPReplay VNF and it
is mirrored back to the VNF on the same port. Finally, the
traffic is received back to the TG uplink port.

	configuration

	The 2 ports RFC2544 correlated test cases are listed below:

	tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex_corelated
_traffic.yaml

Multiple VNF (2, 4, 10) RFC2544 correlated test cases are
listed below:

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated
_scale_10.yaml

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale
_2.yaml

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale
_4.yaml

The scale-out RFC2544 test cases are listed below:

	tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale
_out.yaml

Test duration is set as 30 sec for each test and default
number of rules are applied. These can be configured

	test tool

	The vFW is a DPDK application that performs basic filtering
for malformed packets and dynamic packet filtering of
incoming packets using the connection tracker library.

	applicability

	The vFW RFC2544 test cases can be configured with different:

	packet sizes;

	test duration;

	tolerated loss;

	traffic flows;

	rules;

Default values exist.

	pre-test
conditions

	For OpenStack test case image (yardstick-samplevnf) needs
to be installed into Glance with vFW and DPDK included in
it (NSB install).

For Baremetal tests cases vFW and DPDK must be installed on
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information.

	test sequence

	Description and expected result

	step 1

	For Baremetal test: The TG (except IXIA), vFW and UDPReplay
VNFs are started on the hosts based on the pod file.

For Heat test: Three host VMs are booted, as Traffic
generator, vFW and UDPReplay VNF(vFW) based on the test
flavor. In case of scale-out scenario the multiple vFW VNF
VMs will be started.

	step 2

	Yardstick is connected with the TG, vFW and UDPReplay VNF by
using ssh (in case of IXIA TG is connected via TCL
interface). The test will resolve the topology and
instantiate all VNFs and TG and collect the KPI’s/metrics.

	step 3

	The TG will send packets to the VNFs. If the number of
dropped packets is more than the tolerated loss the line
rate or throughput is halved. This is done until the dropped
packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for 64B packet
size with an accepted minimal packet loss for the default
configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the DPDK ports.

In Heat test: All VNF VMs and TG are deleted on test
completion.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.18. Yardstick Test Case Description: NSB vFW RFC3511 (HTTP)

	NSB vFW test for VNF characterization based on RFC3511 and IXIA

	test case id

	tc_{context}_http_ixload_{http_size}_Requests-65000_{type}

	context = baremetal, heat_external

	http_size = 1b, 4k, 64k, 256k, 512k, 1024k payload size

	type = Concurrency, Connections, Throughput

	metric

	
	HTTP Total Throughput (Kbps);

	HTTP Simulated Users;

	HTTP Concurrent Connections;

	HTTP Connection Rate;

	HTTP Transaction Rate

	test purpose

	The vFW RFC3511 tests measure performance characteristics of
the SUT by sending the HTTP traffic from uplink to downlink
TG ports through vFW VNF. The application forwards received
traffic based on rules provided by the user in the TC
configuration and default rules created by vFW to send
traffic from uplink ports to downlink and voice versa.

	configuration

	The 2 ports RFC3511 test cases are listed below:

	tc_baremetal_http_ixload_1024k_Requests-65000
_Concurrency.yaml

	tc_baremetal_http_ixload_1b_Requests-65000
_Concurrency.yaml

	tc_baremetal_http_ixload_256k_Requests-65000
_Concurrency.yaml

	tc_baremetal_http_ixload_4k_Requests-65000
_Concurrency.yaml

	tc_baremetal_http_ixload_512k_Requests-65000
_Concurrency.yaml

	tc_baremetal_http_ixload_64k_Requests-65000
_Concurrency.yaml

	tc_heat_external_http_ixload_1b_Requests-10Gbps
_Throughput.yaml

	tc_heat_external_http_ixload_1b_Requests-65000
_Concurrency.yaml

	tc_heat_external_http_ixload_1b_Requests-65000
_Connections.yaml

The 4 ports RFC3511 test cases are listed below:

	tc_baremetal_http_ixload_1b_Requests-65000
_Concurrency_4port.yaml

	test tool

	The vFW is a DPDK application that performs basic filtering
for malformed packets and dynamic packet filtering of
incoming packets using the connection tracker library.

	applicability

	The vFW RFC3511 test cases can be configured with different:

	http payload sizes;

	traffic flows;

	rules;

Default values exist.

	pre-test
conditions

	For OpenStack test case image (yardstick-samplevnf) needs
to be installed into Glance with vFW and DPDK included in
it (NSB install).

For Baremetal tests cases vFW and DPDK must be installed on
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information.

	test sequence

	Description and expected result

	step 1

	For Baremetal test: The vFW VNF is started on the hosts
based on the pod file.

For Heat external test: The vFW VM are deployed and booted.

	step 2

	Yardstick is connected with the TG (IxLoad) via IxLoad API
and VNF by using ssh. The test will resolve the topology and
instantiate all VNFs and TG and collect the KPI’s/metrics.

	step 3

	The TG simulates HTTP traffic based on selected type of TC.

	Concurrency:
	The TC attempts to simulate some number of human users.
The simulated users are gradually brought online until 64K
users is met (the Ramp-Up phase), then taken offline (the
Ramp Down phase).

	Connections:
	The TC creates some number of HTTP connections per second.
It will attempt to generate the 64K of HTTP connections
per second.

	Throughput:
	TC simultaneously transmits and receives TCP payload
(bytes) at a certain rate measured in Megabits per second
(Mbps), Kilobits per second (Kbps), or Gigabits per
second. The 10 Gbits is default throughput.

At the end of the TC, the KPIs are collected and stored
(depends on the selected dispatcher).

	step 4

	In Baremetal test: The test quits the application and
unbinds the DPDK ports.

In Heat test: All VNF VMs are deleted and connections to TG
are terminated.

	test verdict

	The test case will try to achieve the configured HTTP
Concurrency/Throughput/Connections.

2.17.2.19. Yardstick Test Case Description: NSB VPP IPSEC

	NSB VPP test for vIPSEC characterization

	test case id

	tc_baremetal_rfc2544_ipv4_{crypto_dev}_{crypto_alg}

	crypto_dev = HW_cryptodev or SW_cryptodev;

	crypto_alg = aes-gcm or cbc-sha1;

	metric

	
	Network Throughput NDR or PDR;

	Connections Per Second (CPS);

	Latency;

	Number of tunnels;

	TG Packets Out;

	TG Packets In;

	VNF Packets Out;

	VNF Packets In;

	Dropped packets;

	test purpose

	IPv4 IPsec tunnel mode performance test:

	Finds and reports throughput NDR (Non Drop Rate) with zero
packet loss tolerance or throughput PDR (Partial Drop Rate)
with non-zero packet loss tolerance (LT) expressed in
number of packets transmitted.

	The IPSEC test cases are implemented to run in baremetal

	configuration

	The IPSEC test cases are listed below:

	tc_baremetal_rfc2544_ipv4_hw_aesgcm_IMIX_trex.yaml

	tc_baremetal_rfc2544_ipv4_hw_aesgcm_trex.yaml

	tc_baremetal_rfc2544_ipv4_hw_cbcsha1_IMIX_trex.yaml

	tc_baremetal_rfc2544_ipv4_hw_cbcsha1_trex.yaml

	tc_baremetal_rfc2544_ipv4_sw_aesgcm_IMIX_trex.yaml

	tc_baremetal_rfc2544_ipv4_sw_aesgcm_trex.yaml

	tc_baremetal_rfc2544_ipv4_sw_cbcsha1_IMIX_trex.yaml

	tc_baremetal_rfc2544_ipv4_sw_cbcsha1_trex.yaml

Test duration is set as 500sec for each test.
Packet size set as 64 bytes or higher.
Number of tunnels set as 1 or higher.
Number of connections set as 1 or higher
These can be configured

	test tool

	Vector Packet Processing (VPP)
The VPP platform is an extensible framework that provides
out-of-the-box production quality switch/router functionality.
Its high performance, proven technology, its modularity and,
flexibility and rich feature set

	applicability

	This VPP IPSEC test cases can be configured with different:

	packet sizes;

	test durations;

	tolerated loss;

	crypto device type;

	number of physical cores;

	number of tunnels;

	number of connections;

	encryption algorithms - integrity algorithm;

Default values exist.

	pre-test
conditions

	For Baremetal tests cases VPP and DPDK must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

	step 2

	Yardstick is connected with the TG and VNF by using ssh.
The test will resolve the topology and instantiate the VNF
and TG and collect the KPI’s/metrics.

	step 3

	Test packets are generated by TG on links to DUTs. If the
number of dropped packets is more than the tolerated loss
the line rate or throughput is halved. This is done until
the dropped packets are within an acceptable tolerated loss.

The KPI is the number of packets per second for a packet size
specified in the test case with an accepted minimal packet
loss for the default configuration.

	step 4

	In Baremetal test: The test quits the application and unbind
the DPDK ports.

	test verdict

	The test case will achieve a Throughput with an accepted
minimal tolerated packet loss.

2.17.2.20. Yardstick Test Case Description: NSB VIMS

	NSB VIMS test for vIMS characterization

	test case id

	tc_vims_{context}_sipp

	context = baremetal or heat;

	metric

	
	Successful registrations per second;

	Total number of active registrations per server;

	Successful de-registrations per second;

	Successful session establishments per second;

	Total number of active sessions per server;

	Mean session setup time;

	Successful re-registrations per second;

	test purpose

	The vIMS test handles registration rate, call rate,
round trip delay, and message statistics of vIMS system.

The vIMS test cases are implemented to run in baremetal
and heat context default configuration.

	configuration

	The vIMS test cases are listed below:

	tc_vims_baremetal_sipp.yaml

	tc_vims_heat_sipp.yaml

Each test runs one time and collects all the KPIs.
The configuration of vIMS and SIPp can be changed in each
test.

	test tool

	SIPp

SIPp is an application that can simulate SIP scenarios, can
generate RTP traffic and used for vIMS characterization.

	applicability

	The SIPp test cases can be configured with different:

	number of accounts;

	the call per second (cps) of SIP test;

	the holding time;

	RTP configuratioin;

	pre-test
conditions

	For Openstack test case, only vIMS is deployed by external
heat template, SIPp needs pod.yaml file with the necessary
system and NIC information

For Baremetal tests cases SIPp and vIMS must be installed in
the hosts where the test is executed. The pod.yaml file must
have the necessary system and NIC information

	test sequence

	description and expected result

	step 1

	For Baremetal test: The TG and VNF are started on the hosts
based on the pod file.

For Heat test: One host VM for vIMS is booted, based on
the test flavor. Another host for SIPp is booted as
traffic generator, based on pod.yaml file

	step 2

	Yardstick is connected with the vIMS and SIPp via ssh.
The test will resolve the topology, instantiate the vIMS and
SIPp and collect the KPIs/metrics.

	step 3

	The SIPp will run scenario tests with parameters configured
in test case files (tc_vims_baremetal_sipp.yaml and
tc_vims_heat_sipp.yaml files).
This is done until the KPIs of SIPp are within an acceptable
threshold.

	step 4

	In Baremetal test: The test quits the application.

In Heat test: The host VM of vIMS is deleted on test
completion.

	test verdict

	The test case will collect the KPIs and plot on Grafana.

2.17.2.21. Yardstick Test Case Description: NSB vCMTS

	NSB Pktgen test for vCMTS characterization

	test case id

	tc_vcmts_k8s_pktgen

	metric

	
	Upstream Processing (Per Service Group);

	Downstream Processing (Per Service Group);

	Upstream Throughput;

	Downstream Throughput;

	Platform Metrics;

	Power Consumption;

	Upstream Throughput Time Series;

	Downstream Throughput Time Series;

	System Summary;

	test purpose

	
	The vCMTS test handles service groups and packet generation
containers setup, and metrics collection.

	The vCMTS test case is implemented to run in Kubernetes
environment with vCMTS pre-installed.

	configuration

	The vCMTS test case configurable values are listed below

	
	num_sg: Number of service groups (Upstream/Downstream
	container pairs).

	num_tg: Number of Pktgen containers.

	vcmtsd_image: vCMTS container image (feat/perf).

	qat_on: QAT status (true/false).

num_sg and num_tg values should be configured in the test
case file and in the topology file.

	test tool

	Intel vCMTS Reference Dataplane
Reference implementation of a DPDK-based vCMTS (DOCSIS MAC)
dataplane in a Kubernetes-orchestrated Linux Container
environment.

	applicability

	This test cases can be configured with different:

	Number of service groups

	Number of Pktgen instances

	QAT offloading

	Feat/Perf Images for performance or features (more data
collection)

Default values exist.

	pre-test
conditions

	Intel vCMTS Reference Dataplane should be installed and
runnable on 2 nodes Kubernetes environment with modifications
to the containers to allow yardstick ssh access, and the
ConfigMaps from the original vCMTS package deployed.

	test sequence

	description and expected result

	step 1

	Yardstick is connected to the Kubernetes Master node using
the configuration file in /etc/kubernetes/admin.yaml

	step 2

	The TG containers are created and started on the traffic
generator server (Master node), While the VNF containers are
created and started on the data plan server.

	step 3

	Yardstick is connected with the TG and VNF by using ssh.
to start vCMTS-d, and Pktgen.

	step 4

	Yardstick connects to the running Pktgen instances to start
generating traffic using the configurations from:

/etc/yardstick/pktgen_values.yaml

and connects to the vCMTS-d containers to start the upstream
and downstream processing using the configurations from:

/etc/yardstick/vcmtsd_values.yaml

	step 5

	Yardstick copies vCMTS metrics regularly from the remote
InfluxDB (deployed by the vCMTS Package) to the local
Yardstick InfluxDB as configured in the options section in
the test case file.

	test verdict

	None. The test case will collect the KPIs and plot on
Grafana.

2.18. Glossary

	API
	Application Programming Interface

	Barometer
	OPNFV NFVi Service Assurance project. Barometer upstreams changes to
collectd, OpenStack, etc to improve features related to NFVi monitoring
and service assurance.
More info on: https://opnfv-barometer.readthedocs.io/en/latest/

	collectd
	collectd is a system statistics collection daemon.
More info on: https://collectd.org/

	context
	A context describes the environment in which a yardstick testcase will
be run. It can refer to a pre-provisioned environment, or an environment
that will be set up using OpenStack or Kubernetes.

	Docker
	Docker provisions and manages containers. Yardstick and many other OPNFV
projects are deployed in containers. Docker is required to launch the
containerized versions of these projects.

	DPDK
	Data Plane Development Kit

	DPI
	Deep Packet Inspection

	DSCP
	Differentiated Services Code Point

	flavor
	A specification of virtual resources used by OpenStack in the creation
of a VM instance.

	Grafana
	A visualization tool, used in Yardstick to retrieve test data from
InfluxDB and display it. Grafana works by defining dashboards, which are
combinations of visualization panes (e.g. line charts and gauges) and
forms that assist the user in formulating SQL-like queries for InfluxDB.
More info on: https://grafana.com/

	IGMP
	Internet Group Management Protocol

	InfluxDB
	One of the Dispatchers supported by Yardstick, it allows test results to
be reported to a time-series database.
More info on: https://www.influxdata.com/

	IOPS
	Input/Output Operations Per Second
A performance measurement used to benchmark storage devices.

	KPI
	Key Performance Indicator

	Kubernetes
	k8s
Kubernetes is an open-source container-orchestration system for automating
deployment, scaling and management of containerized applications.
It is one of the contexts supported in Yardstick.

	MPLS
	Multiprotocol Label Switching

	NFV
	Network Function Virtualization
NFV is an initiative to take network services which were traditionally run
on proprietary, dedicated hardware, and virtualize them to run on general
purpose hardware.

	NFVI
	Network Function Virtualization Infrastructure
The servers, routers, switches, etc on which the NFV system runs.

	NIC
	Network Interface Controller

	NSB
	Network Services Benchmarking. A subset of Yardstick features concerned
with NFVI and VNF characterization.

	OpenStack
	OpenStack is a cloud operating system that controls pools of compute,
storage, and networking resources. OpenStack is an open source project
licensed under the Apache License 2.0.

	PBFS
	Packet Based per Flow State

	PROX
	Packet pROcessing eXecution engine

	QoS
	Quality of Service
The ability to guarantee certain network or storage requirements to
satisfy a Service Level Agreement (SLA) between an application provider
and end users.
Typically includes performance requirements like networking bandwidth,
latency, jitter correction, and reliability as well as storage
performance in Input/Output Operations Per Second (IOPS), throttling
agreements, and performance expectations at peak load

	runner
	The part of a Yardstick testcase that determines how the test will be run
(e.g. for x iterations, y seconds or until state z is reached). The runner
also determines when the metrics are collected/reported.

	SampleVNF
	OPNFV project providing a repository of reference VNFs.
More info on: https://opnfv-samplevnf.readthedocs.io/en/latest/

	scenario
	The part of a Yardstick testcase that describes each test step.

	SLA
	Service Level Agreement
An SLA is an agreement between a service provider and a customer to
provide a certain level of service/performance.

	SR-IOV
	Single Root IO Virtualization
A specification that, when implemented by a physical PCIe
device, enables it to appear as multiple separate PCIe devices. This
enables multiple virtualized guests to share direct access to the
physical device.

	SUT
	System Under Test

	testcase
	A task in Yardstick; the yaml file that is read by Yardstick to
determine how to run a test.

	ToS
	Type of Service

	VLAN
	Virtual LAN (Local Area Network)

	VM
	Virtual Machine
An operating system instance that runs on top of a hypervisor.
Multiple VMs can run at the same time on the same physical
host.

	VNF
	Virtual Network Function

	VNFC
	Virtual Network Function Component

2.19. References

2.19.1. OPNFV

	Parser wiki: https://wiki.opnfv.org/display/parser

	Pharos wiki: https://wiki.opnfv.org/display/pharos

	Yardstick CI: https://build.opnfv.org/ci/view/yardstick/

	Yardstick and ETSI TST001 presentation: https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925205%2Fopnfv_summit_-_bridging_opnfv_and_etsi.pdf

	Yardstick Project presentation: https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925208%2Fopnfv_summit_-_yardstick_project.pdf

	Yardstick wiki: https://wiki.opnfv.org/display/yardstick

2.19.2. References used in Test Cases

	cachestat: https://github.com/brendangregg/perf-tools/tree/master/fs

	cirros-image: https://download.cirros-cloud.net

	cyclictest: https://rt.wiki.kernel.org/index.php/Cyclictest

	DPDKpktgen: https://github.com/Pktgen/Pktgen-DPDK/

	DPDK supported NICs: http://core.dpdk.org/supported/

	fdisk: http://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html

	fio: https://bluestop.org/files/fio/HOWTO.txt

	free: http://manpages.ubuntu.com/manpages/trusty/en/man1/free.1.html

	iperf3: https://iperf.fr/

	iostat: https://linux.die.net/man/1/iostat

	Lmbench man-pages: http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

	Memory bandwidth man-pages: http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

	mpstat man-pages: http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

	netperf: https://hewlettpackard.github.io/netperf/

	pktgen: https://www.kernel.org/doc/Documentation/networking/pktgen.txt

	RAMspeed: http://alasir.com/software/ramspeed/

	sar: https://linux.die.net/man/1/sar

	SR-IOV: https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking

	Storperf: https://wiki.opnfv.org/display/storperf/Storperf

	unixbench: https://github.com/kdlucas/byte-unixbench/tree/master/UnixBench

2.19.3. Research

	NCSRD: http://www.demokritos.gr/?lang=en

	T-NOVA: http://www.t-nova.eu/

	T-NOVA Results: http://www.t-nova.eu/results/

2.19.4. Standards

	ETSI NFV: https://www.etsi.org/technologies-clusters/technologies/nfv

	ETSI GS-NFV TST 001: https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf

	RFC2544: https://www.ietf.org/rfc/rfc2544.txt

3. Yardstick Developer Guide

	3.1. Introduction
	3.1.1. Where can I find some help to start?

	3.2. Yardstick developer areas
	3.2.1. Yardstick framework

	3.3. How Todos?
	3.3.1. How Yardstick works?

	3.3.2. How to work with test cases?
	3.3.2.1. Sample Test cases

	3.3.2.2. OPNFV Release Test cases

	3.3.2.3. Test case Description File

	3.3.2.4. How to write a new test case
	3.3.2.4.1. Write a new simple test case

	3.3.3. How can I contribute to Yardstick?
	3.3.3.1. Gerrit & JIRA introduction

	3.3.3.2. Install Git and Git-reviews

	3.3.3.3. Verify your patch locally before submitting

	3.3.3.4. Submit the code with Git

	3.3.3.5. Push the code to Gerrit for review

	3.3.3.6. Modify the code under review in Gerrit

	3.4. Backporting changes to stable branches

	3.5. Development guidelines
	3.5.1. Coding style

	3.5.2. Running tests
	3.5.2.1. Working with tox

	3.5.3. Writing unit tests
	3.5.3.1. Mocking

	3.6. Plugins

	3.7. Introduction

	3.8. Prerequisites

	3.9. Sample Prox Test Hardware Architecture

	3.10. Prox Test Architecture

	3.11. NSB Prox Test
	3.11.1. Test Description File

	3.11.2. Test Description File for Baremetal

	3.11.3. Traffic Profile File

	3.11.4. Test Description File for Openstack

	3.11.5. Test Description File for Standalone

	3.11.6. Traffic Generator Config file

	3.11.7. SUT Config File

	3.11.8. Baremetal Configuration File

	3.11.9. Grafana Dashboard

	3.12. How to run NSB Prox Test on an baremetal environment

	3.13. How to run NSB Prox Test on an Openstack environment

	3.14. Frequently Asked Questions
	3.14.1. NSB Prox does not work on Baremetal, How do I resolve this?

	3.14.2. How do I debug NSB Prox on Baremetal?

	3.14.3. NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

	3.14.4. How do I debug NSB Prox on Openstack?

	3.14.5. How do I resolve “Quota exceeded for resources”

	3.14.6. Openstack CLI fails or hangs. How do I resolve this?

	3.14.7. How to Understand the Grafana output?

3.1. Introduction

Yardstick is a project dealing with performance testing. Yardstick produces
its own test cases but can also be considered as a framework to support feature
project testing.

Yardstick developed a test API that can be used by any OPNFV project. Therefore
there are many ways to contribute to Yardstick.

You can:

	Develop new test cases

	Review codes

	Develop Yardstick API / framework

	Develop Yardstick grafana dashboards and Yardstick reporting page

	Write Yardstick documentation

This developer guide describes how to interact with the Yardstick project.
The first section details the main working areas of the project. The Second
part is a list of “How to” to help you to join the Yardstick family whatever
your field of interest is.

3.1.1. Where can I find some help to start?

This guide is made for you. You can have a look at the user guide [https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html].
There are also references on documentation, video tutorials, tips in the
project wiki page [https://wiki.opnfv.org/display/yardstick/]. You can also directly contact us by mail with
#yardstick or [yardstick] prefix in the subject at
opnfv-tech-discuss@lists.opnfv.org or on the IRC channel #opnfv-yardstick.

3.2. Yardstick developer areas

3.2.1. Yardstick framework

Yardstick can be considered as a framework. Yardstick is released as a docker
file, including tools, scripts and a CLI to prepare the environement and run
tests. It simplifies the integration of external test suites in CI pipelines
and provides commodity tools to collect and display results.

Since Danube, test categories (also known as tiers) have been created to group
similar tests, provide consistant sub-lists and at the end optimize test
duration for CI (see How To section).

The definition of the tiers has been agreed by the testing working group.

The tiers are:

	smoke

	features

	components

	performance

	vnf

3.3. How Todos?

3.3.1. How Yardstick works?

The installation and configuration of the Yardstick is described in the user guide [https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html].

3.3.2. How to work with test cases?

3.3.2.1. Sample Test cases

Yardstick provides many sample test cases which are located at samples directory of repo.

Sample test cases are designed with the following goals:

	Helping user better understand Yardstick features (including new feature and
new test capacity).

	Helping developer to debug a new feature and test case before it is
offically released.

	Helping other developers understand and verify the new patch before the
patch is merged.

Developers should upload their sample test cases as well when they are
uploading a new patch which is about the Yardstick new test case or new feature.

3.3.2.2. OPNFV Release Test cases

OPNFV Release test cases are located at yardstick/tests/opnfv/test_cases.
These test cases are run by OPNFV CI jobs, which means these test cases should
be more mature than sample test cases.
OPNFV scenario owners can select related test cases and add them into the test
suites which represent their scenario.

3.3.2.3. Test case Description File

This section will introduce the meaning of the Test case description file.
we will use ping.yaml as a example to show you how to understand the test case
description file.
This yaml file consists of two sections. One is scenarios, the other
is context.:

 # Sample benchmark task config file
 # measure network latency using ping

 schema: "yardstick:task:0.1"

 {% set provider = provider or none %}
 {% set physical_network = physical_network or 'physnet1' %}
 {% set segmentation_id = segmentation_id or none %}
 scenarios:
 -
 type: Ping
 options:
 packetsize: 200
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

 context:
 name: demo
 image: yardstick-image
 flavor: yardstick-flavor
 user: ubuntu

 placement_groups:
 pgrp1:
 policy: "availability"

 servers:
 athena:
 floating_ip: true
 placement: "pgrp1"
 ares:
 placement: "pgrp1"

 networks:
 test:
 cidr: '10.0.1.0/24'
 {% if provider == "vlan" %}
 provider: {{provider}}
 physical_network: {{physical_network}}
 {% if segmentation_id %}
 segmentation_id: {{segmentation_id}}
 {% endif %}
 {% endif %}

The contexts section is the description of pre-condition of testing. As
ping.yaml shows, you can configure the image, flavor, name, affinity and
network of Test VM (servers), with this section, you will get a pre-condition
env for Testing.
Yardstick will automatically setup the stack which are described in this
section.
Yardstick converts this section to heat template and sets up the VMs with
heat-client (Yardstick can also support to convert this section to Kubernetes
template to setup containers).

In the examples above, two Test VMs (athena and ares) are configured by
keyword servers.
flavor will determine how many vCPU, how much memory for test VMs.
As yardstick-flavor is a basic flavor which will be automatically created
when you run command yardstick env prepare. yardstick-flavor is
1 vCPU 1G RAM,3G Disk.
image is the image name of test VMs. If you use cirros.3.5.0, you need
fill the username of this image into user.
The policy of placement of Test VMs have two values (affinity and
availability). availability means anti-affinity.
In the network section, you can configure which provider network and
physical_network you want Test VMs to use.
You may need to configure segmentation_id when your network is vlan.

Moreover, you can configure your specific flavor as below, Yardstick will setup
the stack for you.

flavor:
 name: yardstick-new-flavor
 vcpus: 12
 ram: 1024
 disk: 2

Besides default Heat context, Yardstick also allows you to setup two other
types of context. They are Node and Kubernetes.

context:
 type: Kubernetes
 name: k8s

and

context:
 type: Node
 name: LF

The scenarios section is the description of testing steps, you can
orchestrate the complex testing step through scenarios.

Each scenario will do one testing step.
In one scenario, you can configure the type of scenario (operation), runner
type and sla of the scenario.

For TC002, We only have one step, which is Ping from host VM to target VM. In
this step, we also have some detailed operations implemented (such as ssh to
VM, ping from VM1 to VM2. Get the latency, verify the SLA, report the result).

If you want to get this implementation details implement, you can check with
the scenario.py file. For Ping scenario, you can find it in Yardstick repo
(yardstick/yardstick/benchmark/scenarios/networking/ping.py).

After you select the type of scenario (such as Ping), you will select one type
of runner, there are 4 types of runner. Iteration and Duration are
the most commonly used, and the default is Iteration.

For Iteration, you can specify the iteration number and interval of iteration.

runner:
 type: Iteration
 iterations: 10
 interval: 1

That means Yardstick will repeat the Ping test 10 times and the interval of
each iteration is one second.

For Duration, you can specify the duration of this scenario and the
interval of each ping test.

runner:
 type: Duration
 duration: 60
 interval: 10

That means Yardstick will run the ping test as loop until the total time of
this scenario reaches 60s and the interval of each loop is ten seconds.

SLA is the criterion of this scenario. This depends on the scenario. Different
scenarios can have different SLA metric.

3.3.2.4. How to write a new test case

Yardstick already provides a library of testing steps (i.e. different types of
scenario).

Basically, what you need to do is to orchestrate the scenario from the library.

Here, we will show two cases. One is how to write a simple test case, the other
is how to write a quite complex test case.

3.3.2.4.1. Write a new simple test case

First, you can image a basic test case description as below.

	Storage Performance

	metric

	IOPS (Average IOs performed per second),
Throughput (Average disk read/write bandwidth rate),
Latency (Average disk read/write latency)

	test purpose

	The purpose of TC005 is to evaluate the IaaS storage
performance with regards to IOPS, throughput and latency.

	test
description

	fio test is invoked in a host VM on a compute blade, a job
file as well as parameters are passed to fio and fio will
start doing what the job file tells it to do.

	configuration

	file: opnfv_yardstick_tc005.yaml

IO types is set to read, write, randwrite, randread, rw.
IO block size is set to 4KB, 64KB, 1024KB.
fio is run for each IO type and IO block size scheme,
each iteration runs for 30 seconds (10 for ramp time, 20 for
runtime).

For SLA, minimum read/write iops is set to 100,
minimum read/write throughput is set to 400 KB/s,
and maximum read/write latency is set to 20000 usec.

	applicability

	This test case can be configured with different:

	IO types;

	IO block size;

	IO depth;

	ramp time;

	test duration.

Default values exist.

SLA is optional. The SLA in this test case serves as an
example. Considerably higher throughput and lower latency
are expected. However, to cover most configurations, both
baremetal and fully virtualized ones, this value should be
possible to achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read/write bandwidths are lower than this.

	pre-test
conditions

	The test case image needs to be installed into Glance
with fio included in it.

No POD specific requirements have been identified.

	test sequence

	description and expected result

	step 1

	A host VM with fio installed is booted.

	step 2

	Yardstick is connected with the host VM by using ssh.
‘fio_benchmark’ bash script is copyied from Jump Host to
the host VM via the ssh tunnel.

	step 3

	‘fio_benchmark’ script is invoked. Simulated IO operations
are started. IOPS, disk read/write bandwidth and latency are
recorded and checked against the SLA. Logs are produced and
stored.

Result: Logs are stored.

	step 4

	The host VM is deleted.

	test verdict

	Fails only if SLA is not passed, or if there is a test case
execution problem.

TODO

3.3.3. How can I contribute to Yardstick?

If you are already a contributor of any OPNFV project, you can contribute to
Yardstick. If you are totally new to OPNFV, you must first create your Linux
Foundation account, then contact us in order to declare you in the repository
database.

We distinguish 2 levels of contributors:

	the standard contributor can push patch and vote +1/0/-1 on any Yardstick patch

	The commitor can vote -2/-1/0/+1/+2 and merge

Yardstick commitors are promoted by the Yardstick contributors.

3.3.3.1. Gerrit & JIRA introduction

OPNFV uses Gerrit [https://www.gerritcodereview.com/] for web based code review and repository management for the
Git Version Control System. You can access OPNFV Gerrit [http://gerrit.opnfv.org/gerrit]. Please note that
you need to have Linux Foundation ID in order to use OPNFV Gerrit. You can get
one from this link [https://identity.linuxfoundation.org/].

OPNFV uses JIRA [https://jira.opnfv.org/secure/Dashboard.jspa] for issue management. An important principle of change
management is to have two-way trace-ability between issue management
(i.e. JIRA [https://jira.opnfv.org/secure/Dashboard.jspa]) and the code repository (via Gerrit [https://www.gerritcodereview.com/]). In this way, individual
commits can be traced to JIRA issues and we also know which commits were used
to resolve a JIRA issue.

If you want to contribute to Yardstick, you can pick a issue from Yardstick’s
JIRA dashboard or you can create you own issue and submit it to JIRA.

3.3.3.2. Install Git and Git-reviews

Installing and configuring Git and Git-Review is necessary in order to submit
code to Gerrit. The
Getting to the code [https://wiki.opnfv.org/display/DEV/Developer+Getting+Started]
page will provide you with some help for that.

3.3.3.3. Verify your patch locally before submitting

Once you finish a patch, you can submit it to Gerrit for code review. A
developer sends a new patch to Gerrit will trigger patch verify job on Jenkins
CI. The yardstick patch verify job includes python pylint check, unit test and
code coverage test. Before you submit your patch, it is recommended to run the
patch verification in your local environment first.

Open a terminal window and set the project’s directory to the working
directory using the cd command. Assume that YARDSTICK_REPO_DIR is the
path to the Yardstick project folder on your computer:

cd $YARDSTICK_REPO_DIR

Verify your patch:

tox

It is used in CI but also by the CLI.

For more details on tox and tests, please refer to the Running tests
and working with tox sections below, which describe the different available
environments.

3.3.3.4. Submit the code with Git

Tell Git which files you would like to take into account for the next commit.
This is called ‘staging’ the files, by placing them into the staging area,
using the git add command (or the synonym git stage command):

git add $YARDSTICK_REPO_DIR/samples/sample.yaml

Alternatively, you can choose to stage all files that have been modified (that
is the files you have worked on) since the last time you generated a commit,
by using the -a argument:

git add -a

Git won’t let you push (upload) any code to Gerrit if you haven’t pulled the
latest changes first. So the next step is to pull (download) the latest
changes made to the project by other collaborators using the pull command:

git pull

Now that you have the latest version of the project and you have staged the
files you wish to push, it is time to actually commit your work to your local
Git repository:

git commit --signoff -m "Title of change"

Test of change that describes in high level what was done. There is a lot of
documentation in code so you do not need to repeat it here.

JIRA: YARDSTICK-XXX

The message that is required for the commit should follow a specific set of
rules. This practice allows to standardize the description messages attached
to the commits, and eventually navigate among the latter more easily.

This document [https://chris.beams.io/posts/git-commit/] happened to be very clear and useful to get started with that.

3.3.3.5. Push the code to Gerrit for review

Now that the code has been comitted into your local Git repository the
following step is to push it online to Gerrit for it to be reviewed. The
command we will use is git review:

git review

This will automatically push your local commit into Gerrit. You can add
Yardstick committers and contributors to review your codes.

[image: Gerrit for code review]
You can find a list Yardstick people
here [https://wiki.opnfv.org/display/yardstick/Yardstick+People], or use
the yardstick-reviewers and yardstick-committers groups in gerrit.

3.3.3.6. Modify the code under review in Gerrit

At the same time the code is being reviewed in Gerrit, you may need to edit it
to make some changes and then send it back for review. The following steps go
through the procedure.

Once you have modified/edited your code files under your IDE, you will have to
stage them. The git status command is very helpful at this point as it
provides an overview of Git’s current state:

git status

This command lists the files that have been modified since the last commit.

You can now stage the files that have been modified as part of the Gerrit code
review addition/modification/improvement using git add command. It is now
time to commit the newly modified files, but the objective here is not to
create a new commit, we simply want to inject the new changes into the
previous commit. You can achieve that with the ‘–amend’ option on the
git commit command:

git commit --amend

If the commit was successful, the git status command should not return the
updated files as about to be commited.

The final step consists in pushing the newly modified commit to Gerrit:

git review

3.4. Backporting changes to stable branches

During the release cycle, when master and the stable/<release> branch have
diverged, it may be necessary to backport (cherry-pick) changes top the
stable/<release> branch once they have merged to master.
These changes should be identified by the committers reviewing the patch.
Changes should be backported as soon as possible after merging of the
original code.

	..note::
	Besides the commit and review process below, the Jira tick must be updated to
add dual release versions and indicate that the change is to be backported.

The process for backporting is as follows:

	Committer A merges a change to master (process for normal changes).

	Committer A cherry-picks the change to stable/<release> branch (if the
bug has been identified for backporting).

	The original author should review the code and verify that it still works
(and give a +1).

	Committer B reviews the change, gives a +2 and merges to
stable/<release>.

A backported change needs a +1 and a +2 from a committer who didn’t
propose the change (i.e. minimum 3 people involved).

3.5. Development guidelines

This section provides guidelines and best practices for feature development
and bug fixing in Yardstick.

In general, bug fixes should be submitted as a single patch.

When developing larger features, all commits on the local topic branch can be
submitted together, by running git review on the tip of the branch. This
creates a chain of related patches in gerrit.

Each commit should contain one logical change and the author should aim for no
more than 300 lines of code per commit. This helps to make the changes easier
to review.

Each feature should have the following:

	Feature/bug fix code

	Unit tests (both positive and negative)

	Functional tests (optional)

	Sample testcases (if applicable)

	Documentation

	Update to release notes

3.5.1. Coding style

Please follow the OpenStack Style Guidelines [https://docs.openstack.org/hacking/latest/user/hacking.html] for code contributions (the
section on Internationalization (i18n) Strings is not applicable).

When writing commit message, the OPNFV coding guidelines [https://wiki.opnfv.org/display/DEV/Contribution+Guidelines] on git commit
message style should also be used.

3.5.2. Running tests

Once your patch has been submitted, a number of tests will be run by Jenkins
CI to verify the patch. Before submitting your patch, you should run these
tests locally. You can do this using tox, which has a number of different
test environments defined in tox.ini.
Calling tox without any additional arguments runs the default set of
tests (unit tests, functional tests, coverage and pylint).

If some tests are failing, you can save time and select test environments
individually, by passing one or more of the following command-line options to
tox:

	-e py27: Unit tests using Python 2.7

	-e py3: Unit tests using Python 3

	-e pep8: Linter and style checks on updated files

	-e functional: Functional tests using Python 2.7

	-e functional-py3: Functional tests using Python 3

	-e coverage: Code coverage checks

Note

You need to stage your changes prior to running coverage for those
changes to be checked.

In addition to the tests run by Jenkins (listed above), there are a number of
other test environments defined.

	-e pep8-full: Linter and style checks are run on the whole repo (not
just on updated files)

	-e os-requirements: Check that the requirements are compatible with
OpenStack requirements.

3.5.2.1. Working with tox

tox uses virtualenv [https://virtualenv.pypa.io/en/stable/] to create isolated Python environments to run the
tests in. The test environments are located at
.tox/<environment_name> e.g. .tox/py27.

If requirements are changed, you will need to recreate the tox test
environment to make sure the new requirements are installed. This is done by
passing the additional -r command-line option to tox:

tox -r -e ...

This can also be achieved by deleting the test environments manually before
running tox:

rm -rf .tox/<environment_name>
rm -rf .tox/py27

3.5.3. Writing unit tests

For each change submitted, a set of unit tests should be submitted, which
should include both positive and negative testing.

In order to help identify which tests are needed, follow the guidelines below.

	In general, there should be a separate test for each branching point, return
value and input set.

	Negative tests should be written to make sure exceptions are raised and/or
handled appropriately.

The following convention should be used for naming tests:

test_<method_name>_<some_comment>

The comment gives more information on the nature of the test, the side effect
being checked, or the parameter being modified:

test_my_method_runtime_error
test_my_method_invalid_credentials
test_my_method_param1_none

3.5.3.1. Mocking

The mock library is used for unit testing to stub out external libraries.

The following conventions are used in Yardstick:

	Use mock.patch.object instead of mock.patch.

	When naming mocked classes/functions, use mock_<class_and_function_name>
e.g. mock_subprocess_call

	Avoid decorating classes with mocks. Apply the mocking in setUp():

@mock.patch.object(ssh, 'SSH')
class MyClassTestCase(unittest.TestCase):

should be:

class MyClassTestCase(unittest.TestCase):
 def setUp(self):
 self._mock_ssh = mock.patch.object(ssh, 'SSH')
 self.mock_ssh = self._mock_ssh.start()

 self.addCleanup(self._stop_mocks)

 def _stop_mocks(self):
 self._mock_ssh.stop()

3.6. Plugins

For information about Yardstick plugins, refer to the chapter
Installing a plug-in into Yardstick in the user guide [https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html].

3.7. Introduction

This document describes the steps to create a new NSB PROX test based on
existing PROX functionalities. NSB PROX provides is a simple approximation
of an operation and can be used to develop best practices and TCO models
for Telco customers, investigate the impact of new Intel compute,
network and storage technologies, characterize performance, and develop
optimal system architectures and configurations.

NSB PROX Supports Baremetal, Openstack and standalone configuration.

Contents

	Introduction

	Prerequisites

	Sample Prox Test Hardware Architecture

	Prox Test Architecture

	NSB Prox Test

	Test Description File

	Test Description File for Baremetal

	Traffic Profile File

	Test Description File for Openstack

	Test Description File for Standalone

	Traffic Generator Config file

	SUT Config File

	Baremetal Configuration File

	Grafana Dashboard

	How to run NSB Prox Test on an baremetal environment

	How to run NSB Prox Test on an Openstack environment

	Frequently Asked Questions

	NSB Prox does not work on Baremetal, How do I resolve this?

	How do I debug NSB Prox on Baremetal?

	NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

	How do I debug NSB Prox on Openstack?

	How do I resolve “Quota exceeded for resources”

	Openstack CLI fails or hangs. How do I resolve this?

	How to Understand the Grafana output?

3.8. Prerequisites

In order to integrate PROX tests into NSB, the following prerequisites are
required.

	A working knowledge of Yardstick. See yardstick wiki page [https://wiki.opnfv.org/display/yardstick/].

	A working knowledge of PROX. See Prox documentation [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation].

	Knowledge of Openstack. See openstack wiki page [https://wiki.openstack.org/wiki/Main_Page].

	Knowledge of how to use Grafana. See grafana getting started [http://docs.grafana.org/guides/gettingstarted/].

	How to Deploy InfluxDB & Grafana. See grafana deployment [https://wiki.opnfv.org/display/yardstick/How+to+deploy+InfluxDB+and+Grafana+locally].

	How to use Grafana in OPNFV/Yardstick. See opnfv grafana dashboard [https://wiki.opnfv.org/display/yardstick/How+to+work+with+grafana+dashboard].

	How to install NSB. See NSB Installation [http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation]

3.9. Sample Prox Test Hardware Architecture

The following is a diagram of a sample NSB PROX Hardware Architecture
for both NSB PROX on Bare metal and on Openstack.

In this example when running yardstick on baremetal, yardstick will
run on the deployment node, the generator will run on the deployment node
and the SUT(SUT) will run on the Controller Node.

[image: Sample NSB PROX Hard Architecture]

3.10. Prox Test Architecture

In order to create a new test, one must understand the architecture of
the test.

A NSB Prox test architecture is composed of:

	A traffic generator. This provides blocks of data on 1 or more ports
to the SUT.
The traffic generator also consumes the result packets from the system
under test.

	A SUT consumes the packets generated by the packet
generator, and applies one or more tasks to the packets and return the
modified packets to the traffic generator.

This is an example of a sample NSB PROX test architecture.

[image: NSB PROX test Architecture]
This diagram is of a sample NSB PROX test application.

	Traffic Generator

	Generator Tasks - Composted of 1 or more tasks (It is possible to
have multiple tasks sending packets to same port No. See Tasks Ai and Aii
plus Di and Dii)

	Task Ai - Generates Packets on Port 0 of Traffic Generator
and send to Port 0 of SUT Port 0

	Task Aii - Generates Packets on Port 0 of Traffic Generator
and send to Port 0 of SUT Port 0

	Task B - Generates Packets on Port 1 of Traffic Generator
and send to Port 1 of SUT Port 1

	Task C - Generates Packets on Port 2 of Traffic Generator
and send to Port 2 of SUT Port 2

	Task Di - Generates Packets on Port 3 of Traffic Generator
and send to Port 3 of SUT Port 3

	Task Dii - Generates Packets on Port 0 of Traffic Generator
and send to Port 0 of SUT Port 0

	Verifier Tasks - Composed of 1 or more tasks which receives
packets from SUT

	Task E - Receives packets on Port 0 of Traffic Generator sent
from Port 0 of SUT Port 0

	Task F - Receives packets on Port 1 of Traffic Generator sent
from Port 1 of SUT Port 1

	Task G - Receives packets on Port 2 of Traffic Generator sent
from Port 2 of SUT Port 2

	Task H - Receives packets on Port 3 of Traffic Generator sent
from Port 3 of SUT Port 3

	SUT

	Receiver Tasks - Receives packets from generator - Composed on 1 or
more tasks which consume the packs sent from Traffic Generator

	Task A - Receives Packets on Port 0 of System-Under-Test from
Traffic Generator Port 0, and forwards packets to Task E

	Task B - Receives Packets on Port 1 of System-Under-Test from
Traffic Generator Port 1, and forwards packets to Task E

	Task C - Receives Packets on Port 2 of System-Under-Test from
Traffic Generator Port 2, and forwards packets to Task E

	Task D - Receives Packets on Port 3 of System-Under-Test from
Traffic Generator Port 3, and forwards packets to Task E

	Processing Tasks - Composed of multiple tasks in series which carry
out some processing on received packets before forwarding to the
task.

	Task E - This receives packets from the Receiver Tasks,
carries out some operation on the data and forwards to result
packets to the next task in the sequence - Task F

	Task F - This receives packets from the previous Task - Task
E, carries out some operation on the data and forwards to result
packets to the next task in the sequence - Task G

	Task G - This receives packets from the previous Task - Task F
and distributes the result packages to the Transmitter tasks

	Transmitter Tasks - Composed on 1 or more tasks which send the
processed packets back to the Traffic Generator

	Task H - Receives Packets from Task G of System-Under-Test and
sends packets to Traffic Generator Port 0

	Task I - Receives Packets from Task G of System-Under-Test and
sends packets to Traffic Generator Port 1

	Task J - Receives Packets from Task G of System-Under-Test and
sends packets to Traffic Generator Port 2

	Task K - Receives Packets From Task G of System-Under-Test and
sends packets to Traffic Generator Port 3

3.11. NSB Prox Test

A NSB Prox test is composed of the following components :-

	Test Description File. Usually called
tc_prox_<context>_<test>-<ports>.yaml where

	<context> is either baremetal or heat_context

	<test> is the a one or 2 word description of the test.

	<ports> is the number of ports used

Example tests tc_prox_baremetal_l2fwd-2.yaml or
tc_prox_heat_context_vpe-4.yaml. This file describes the components
of the test, in the case of openstack the network description and
server descriptions, in the case of baremetal the hardware
description location. It also contains the name of the Traffic Generator,
the SUT config file and the traffic profile description, all described below.
See Test Description File

	Traffic Profile file. Example prox_binsearch.yaml. This describes the
packet size, tolerated loss, initial line rate to start traffic at, test
interval etc See Traffic Profile File

	Traffic Generator Config file. Usually called gen_<test>-<ports>.cfg.

This describes the activity of the traffic generator

	What each core of the traffic generator does,

	The packet of data sent by a core on a port of the traffic generator
to the system under test

	What core is used to wait on what port for data from the system
under test.

Example traffic generator config file gen_l2fwd-4.cfg
See Traffic Generator Config file

	SUT Config file. Usually called handle_<test>-<ports>.cfg.

This describes the activity of the SUTs

	What each core of the does,

	What cores receives packets from what ports

	What cores perform operations on the packets and pass the packets onto
another core

	What cores receives packets from what cores and transmit the packets on
the ports to the Traffic Verifier tasks of the Traffic Generator.

Example traffic generator config file handle_l2fwd-4.cfg
See SUT Config File

	NSB PROX Baremetal Configuration file. Usually called
prox-baremetal-<ports>.yaml

	<ports> is the number of ports used

This is required for baremetal only. This describes hardware, NICs,
IP addresses, Network drivers, usernames and passwords.
See Baremetal Configuration File

	Grafana Dashboard. Usually called
Prox_<context>_<test>-<port>-<DateAndTime>.json where

	<context> Is BM,``heat``,``ovs_dpdk`` or sriov

	<test> Is the a one or 2 word description of the test.

	<port> is the number of ports used express as 2Port or 4Port

	<DateAndTime> is the Date and Time expressed as a string.

Example grafana dashboard Prox_BM_L2FWD-4Port-1507804504588.json

Other files may be required. These are test specific files and will be
covered later.

3.11.1. Test Description File

Here we will discuss the test description for
baremetal, openstack and standalone.

3.11.2. Test Description File for Baremetal

This section will introduce the meaning of the Test case description
file. We will use tc_prox_baremetal_l2fwd-2.yaml as an example to
show you how to understand the test description file.

[image: NSB PROX Test Description File]
Now let’s examine the components of the file in detail

	traffic_profile - This specifies the traffic profile for the
test. In this case prox_binsearch.yaml is used. See
Traffic Profile File

	
	topology - This is either prox-tg-topology-1.yaml or
	prox-tg-topology-2.yaml or prox-tg-topology-4.yaml
depending on number of ports required.

	nodes - This names the Traffic Generator and the System
under Test. Does not need to change.

	interface_speed_gbps - This is an optional parameter. If not present
the system defaults to 10Gbps. This defines the speed of the interfaces.

	collectd - (Optional) This specifies we want to collect NFVI statistics
like CPU Utilization,

	prox_path - Location of the Prox executable on the traffic
generator (Either baremetal or Openstack Virtual Machine)

	prox_config - This is the SUT Config File.
In this case it is handle_l2fwd-2.cfg

A number of additional parameters can be added. This example
is for VPE:

options:
 interface_speed_gbps: 10

 traffic_config:
 tolerated_loss: 0.01
 test_precision: 0.01
 packet_sizes: [64]
 duration: 30
 lower_bound: 0.0
 upper_bound: 100.0

 vnf__0:
 prox_path: /opt/nsb_bin/prox
 prox_config: ``configs/handle_vpe-4.cfg``
 prox_args:
 ``-t``: ````
 prox_files:
 ``configs/vpe_ipv4.lua`` : ````
 ``configs/vpe_dscp.lua`` : ````
 ``configs/vpe_cpe_table.lua`` : ````
 ``configs/vpe_user_table.lua`` : ````
 ``configs/vpe_rules.lua`` : ````
 prox_generate_parameter: True

 ``interface_speed_gbps`` - this specifies the speed of the interface
 in Gigabits Per Second. This is used to calculate pps(packets per second).
 If the interfaces are of different speeds, then this specifies the speed
 of the slowest interface. This parameter is optional. If omitted the
 interface speed defaults to 10Gbps.

 ``traffic_config`` - This allows the values here to override the values in
 in the traffic_profile file. e.g. "prox_binsearch.yaml". Values provided
 here override values provided in the "traffic_profile" section of the
 traffic_profile file. Some, all or none of the values can be provided here.

 The values describes the packet size, tolerated loss, initial line rate
 to start traffic at, test interval etc See `Traffic Profile File`_

 ``prox_files`` - this specified that a number of addition files
 need to be provided for the test to run correctly. This files
 could provide routing information,hashing information or a
 hashing algorithm and ip/mac information.

 ``prox_generate_parameter`` - this specifies that the NSB application
 is required to provide information to the nsb Prox in the form
 of a file called ``parameters.lua``, which contains information
 retrieved from either the hardware or the openstack configuration.

	prox_args - this specifies the command line arguments to start
prox. See prox command line [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#Command_line_options].

	prox_config - This specifies the Traffic Generator config file.

	runner - This is set to ProxDuration - This specifies that the
test runs for a set duration. Other runner types are available
but it is recommend to use ProxDuration. The following parameters
are supported

interval - (optional) - This specifies the sampling interval.
Default is 1 sec

sampled - (optional) - This specifies if sampling information is
required. Default no

duration - This is the length of the test in seconds. Default
is 60 seconds.

confirmation - This specifies the number of confirmation retests to
be made before deciding to increase or decrease line speed. Default 0.

	context - This is context for a 2 port Baremetal configuration.

If a 4 port configuration was required then file
prox-baremetal-4.yaml would be used. This is the NSB Prox
baremetal configuration file.

3.11.3. Traffic Profile File

This describes the details of the traffic flow. In this case
prox_binsearch.yaml is used.

[image: NSB PROX Traffic Profile]

	name - The name of the traffic profile. This name should match the
name specified in the traffic_profile field in the Test
Description File.

	traffic_type - This specifies the type of traffic pattern generated,
This name matches class name of the traffic generator. See:

network_services/traffic_profile/prox_binsearch.py class ProxBinSearchProfile(ProxProfile)

In this case it lowers the traffic rate until the number of packets
sent is equal to the number of packets received (plus a
tolerated loss). Once it achieves this it increases the traffic
rate in order to find the highest rate with no traffic loss.

Custom traffic types can be created by creating a new traffic profile class.

	tolerated_loss - This specifies the percentage of packets that
can be lost/dropped before
we declare success or failure. Success is Transmitted-Packets from
Traffic Generator is greater than or equal to
packets received by Traffic Generator plus tolerated loss.

	test_precision - This specifies the precision of the test
results. For some tests the success criteria may never be
achieved because the test precision may be greater than the
successful throughput. For finer results increase the precision
by making this value smaller.

	packet_sizes - This specifies the range of packets size this
test is run for.

	duration - This specifies the sample duration that the test
uses to check for success or failure.

	lower_bound - This specifies the test initial lower bound sample rate.
On success this value is increased.

	upper_bound - This specifies the test initial upper bound sample rate.
On success this value is decreased.

Other traffic profiles exist eg prox_ACL.yaml which does not
compare what is received with what is transmitted. It just
sends packet at max rate.

It is possible to create custom traffic profiles with by
creating new file in the same folder as prox_binsearch.yaml.
See this prox_vpe.yaml as example:

schema: ``nsb:traffic_profile:0.1``

name: prox_vpe
description: Prox vPE traffic profile

traffic_profile:
 traffic_type: ProxBinSearchProfile
 tolerated_loss: 100.0 #0.001
 test_precision: 0.01
The minimum size of the Ethernet frame for the vPE test is 68 bytes.
 packet_sizes: [68]
 duration: 5
 lower_bound: 0.0
 upper_bound: 100.0

3.11.4. Test Description File for Openstack

We will use tc_prox_heat_context_l2fwd-2.yaml as a example to show
you how to understand the test description file.

[image: NSB PROX Test Description File - Part 1]
[image: NSB PROX Test Description File - Part 2]

Now lets examine the components of the file in detail

Sections 1 to 9 are exactly the same in Baremetal and in Heat. Section
10 is replaced with sections A to F. Section 10 was for a baremetal
configuration file. This has no place in a heat configuration.

	image - yardstick-samplevnfs. This is the name of the image
created during the installation of NSB. This is fixed.

	flavor - The flavor is created dynamically. However we could
use an already existing flavor if required. In that case the
flavor would be named:

flavor: yardstick-flavor

	extra_specs - This allows us to specify the number of
cores sockets and hyperthreading assigned to it. In this case
we have 1 socket with 10 codes and no hyperthreading enabled.

	placement_groups - default. Do not change for NSB PROX.

	servers - tg_0 is the traffic generator and vnf_0
is the system under test.

	networks - is composed of a management network labeled mgmt
and one uplink network labeled uplink_0 and one downlink
network labeled downlink_0 for 2 ports. If this was a 4 port
configuration there would be 2 extra downlink ports. See this
example from a 4 port l2fwd test.:

networks:
 mgmt:
 cidr: '10.0.1.0/24'
 uplink_0:
 cidr: '10.0.2.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'
 downlink_0:
 cidr: '10.0.3.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'
 uplink_1:
 cidr: '10.0.4.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'
 downlink_1:
 cidr: '10.0.5.0/24'
 gateway_ip: 'null'
 port_security_enabled: False
 enable_dhcp: 'false'

3.11.5. Test Description File for Standalone

We will use tc_prox_ovs-dpdk_l2fwd-2.yaml as a example to show
you how to understand the test description file.

[image: NSB PROX Test Standalone Description File - Part 1]
[image: NSB PROX Test Standalone Description File - Part 2]

Now lets examine the components of the file in detail

Sections 1 to 9 are exactly the same in Baremetal and in Heat. Section
10 is replaced with sections A to F. Section 10 was for a baremetal
configuration file. This has no place in a heat configuration.

	file - Pod file for Baremetal Traffic Generator configuration:
IP Address, User/Password & Interfaces

	type - This defines the type of standalone configuration.
Possible values are StandaloneOvsDpdk or StandaloneSriov

	file - Pod file for Standalone host configuration:
IP Address, User/Password & Interfaces

	vm_deploy - Deploy a new VM or use an existing VM

	ovs_properties - OVS Version, DPDK Version and configuration
to use.

	flavor- NSB image generated when installing NSB using ansible-playbook:

ram- Configurable RAM for SUT VM
extra_specs
 hw:cpu_sockets - Configurable number of Sockets for SUT VM
 hw:cpu_cores - Configurable number of Cores for SUT VM
 hw:cpu_threads- Configurable number of Threads for SUT VM

	mgmt - Management port of the SUT VM. Preconfig needed on TG & SUT host machines.
is the system under test.

	xe0 - Upline Network port

	xe1 - Downline Network port

	uplink_0 - Uplink Phy port of the NIC on the host. This will be used to create
the Virtual Functions.

	downlink_0 - Downlink Phy port of the NIC on the host. This will be used to
create the Virtual Functions.

3.11.6. Traffic Generator Config file

This section will describe the traffic generator config file.
This is the same for both baremetal and heat. See this example
of gen_l2fwd_multiflow-2.cfg to explain the options.

[image: NSB PROX Gen Config File]
The configuration file is divided into multiple sections, each
of which is used to define some parameters and options.:

[eal options]
[variables]
[port 0]
[port 1]
[port .]
[port Z]
[defaults]
[global]
[core 0]
[core 1]
[core 2]
[core .]
[core Z]

See prox options [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D] for details

Now let’s examine the components of the file in detail

	[eal options] - This specified the EAL (Environmental
Abstraction Layer) options. These are default values and
are not changed. See dpdk wiki page [https://www.dpdk.org/].

	[variables] - This section contains variables, as
the name suggests. Variables for Core numbers, mac
addresses, ip addresses etc. They are assigned as a
key = value where the key is used in place of the value.

Caution

A special case for valuables with a value beginning with
@@. These values are dynamically updated by the NSB
application at run time. Values like MAC address,
IP Address etc.

	[port 0] - This section describes the DPDK Port. The number
following the keyword port usually refers to the DPDK Port
Id. usually starting from 0. Because you can have multiple
ports this entry usually repeated. Eg. For a 2 port setup
[port0] and [port 1] and for a 4 port setup [port 0],
[port 1], [port 2] and [port 3]:

[port 0]
name=p0
mac=hardware
rx desc=2048
tx desc=2048
promiscuous=yes

	In this example name = p0 assigned the name p0 to the
port. Any name can be assigned to a port.

	mac=hardware sets the MAC address assigned by the hardware
to data from this port.

	rx desc=2048 sets the number of available descriptors to
allocate for receive packets. This can be changed and can
effect performance.

	tx desc=2048 sets the number of available descriptors to
allocate for transmit packets. This can be changed and can
effect performance.

	promiscuous=yes this enables promiscuous mode for this port.

	[defaults] - Here default operations and settings can be over
written. In this example mempool size=4K the number of mbufs
per task is altered. Altering this value could effect
performance. See prox options [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D] for details.

	[global] - Here application wide setting are supported. Things
like application name, start time, duration and memory
configurations can be set here. In this example.:

 [global]
 start time=5
 name=Basic Gen

a. ``start time=5`` Time is seconds after which average
 stats will be started.
b. ``name=Basic Gen`` Name of the configuration.

	[core 0] - This core is designated the master core. Every
Prox application must have a master core. The master mode must
be assigned to exactly one task, running alone on one core.:

[core 0]
mode=master

	[core 1] - This describes the activity on core 1. Cores can
be configured by means of a set of [core #] sections, where
represents either:

	an absolute core number: e.g. on a 10-core, dual socket
system with hyper-threading,
cores are numbered from 0 to 39.

	PROX allows a core to be identified by a core number, the
letter ‘s’, and a socket number.

It is possible to write a baremetal and an openstack test which use
the same traffic generator config file and SUT config file.
In this case it is advisable not to use physical
core numbering.

However it is also possible to write NSB Prox tests that
have been optimized for a particular hardware configuration.
In this case it is advisable to use the core numbering.
It is up to the user to make sure that cores from
the right sockets are used (i.e. from the socket on which the NIC
is attached to), to ensure good performance (EPA).

Each core can be assigned with a set of tasks, each running
one of the implemented packet processing modes.:

[core 1]
name=p0
task=0
mode=gen
tx port=p0
bps=1250000000
; Ethernet + IP + UDP
pkt inline=${sut_mac0} 70 00 00 00 00 01 08 00 45 00 00 1c 00 01 00 00 40 11 f7 7d 98 10 64 01 98 10 64 02 13 88 13 88 00 08 55 7b
; src_ip: 152.16.100.0/8
random=0000XXX1
rand_offset=29
; dst_ip: 152.16.100.0/8
random=0000XXX0
rand_offset=33
random=0001001110001XXX0001001110001XXX
rand_offset=34

	name=p0 - Name assigned to the core.

	task=0 - Each core can run a set of tasks. Starting with 0.
Task 1 can be defined later in this core or
can be defined in another [core 1] section with task=1
later in configuration file. Sometimes running
multiple task related to the same packet on the same physical
core improves performance, however sometimes it
is optimal to move task to a separate core. This is best
decided by checking performance.

	mode=gen - Specifies the action carried out by this task on
this core. Supported modes are: classify, drop, gen, lat, genl4, nop, l2fwd, gredecap,
greencap, lbpos, lbnetwork, lbqinq, lb5tuple, ipv6_decap, ipv6_encap,
qinqdecapv4, qinqencapv4, qos, routing, impair,
mirror, unmpls, tagmpls, nat, decapnsh, encapnsh, police, acl
Which are :-

	Classify

	Drop

	Basic Forwarding (no touch)

	L2 Forwarding (change MAC)

	GRE encap/decap

	Load balance based on packet fields

	Symmetric load balancing

	QinQ encap/decap IPv4/IPv6

	ARP

	QoS

	Routing

	Unmpls

	Nsh encap/decap

	Policing

	ACL

In the traffic generator we expect a core to generate packets (gen)
and to receive packets & calculate latency (lat)
This core does gen . ie it is a traffic generator.

To understand what each of the modes support please see
prox documentation [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation].

	tx port=p0 - This specifies that the packets generated are
transmitted to port p0

	bps=1250000000 - This indicates Bytes Per Second to
generate packets.

	; Ethernet + IP + UDP - This is a comment. Items starting with
; are ignored.

	pkt inline=${sut_mac0} 70 00 00 00 ... - Defines the packet
format as a sequence of bytes (each
expressed in hexadecimal notation). This defines the packet
that is generated. This packets begins
with the hexadecimal sequence assigned to sut_mac and the
remainder of the bytes in the string.
This packet could now be sent or modified by random=..
described below before being sent to target.

	; src_ip: 152.16.100.0/8 - Comment

	random=0000XXX1 - This describes a field of the packet
containing random data. This string can be
8,16,24 or 32 character long and represents 1,2,3 or 4
bytes of data. In this case it describes a byte of
data. Each character in string can be 0,1 or X. 0 or 1
are fixed bit values in the data packet and X is a
random bit. So random=0000XXX1 generates 00000001(1),
00000011(3), 00000101(5), 00000111(7),
00001001(9), 00001011(11), 00001101(13) and 00001111(15)
combinations.

	rand_offset=29 - Defines where to place the previously
defined random field.

	; dst_ip: 152.16.100.0/8 - Comment

	random=0000XXX0 - This is another random field which
generates a byte of 00000000(0), 00000010(2),
00000100(4), 00000110(6), 00001000(8), 00001010(10),
00001100(12) and 00001110(14) combinations.

	rand_offset=33 - Defines where to place the previously
defined random field.

	random=0001001110001XXX0001001110001XXX - This is
another random field which generates 4 bytes.

	rand_offset=34 - Defines where to place the previously
defined 4 byte random field.

Core 2 executes same scenario as Core 1. The only difference
in this case is that the packets are generated
for Port 1.

	[core 3] - This defines the activities on core 3. The purpose
of core 3 and core 4 is to receive packets
sent by the SUT.:

[core 3]
name=rec 0
task=0
mode=lat
rx port=p0
lat pos=42

	name=rec 0 - Name assigned to the core.

	task=0 - Each core can run a set of tasks. Starting with
0. Task 1 can be defined later in this core or
can be defined in another [core 1] section with
task=1 later in configuration file. Sometimes running
multiple task related to the same packet on the same
physical core improves performance, however sometimes it
is optimal to move task to a separate core. This is
best decided by checking performance.

	mode=lat - Specifies the action carried out by this task on this
core.
Supported modes are: acl, classify, drop, gredecap,
greencap, ipv6_decap, ipv6_encap, l2fwd, lbnetwork,
lbpos, lbqinq, nop, police, qinqdecapv4,
qinqencapv4, qos, routing, impair, lb5tuple,
mirror, unmpls, tagmpls, nat, decapnsh, encapnsh,
gen, genl4 and lat. This task(0) per core(3) receives packets
on port.

	rx port=p0 - The port to receive packets on Port 0. Core 4 will
receive packets on Port 1.

	lat pos=42 - Describes where to put a 4-byte timestamp in the packet.
Note that the packet length should be longer than lat pos + 4 bytes
to avoid truncation of the timestamp. It defines where the timestamp is
to be read from. Note that the SUT workload might cause the position of
the timestamp to change (i.e. due to encapsulation).

3.11.7. SUT Config File

This section will describes the SUT(VNF) config file. This is the same for both
baremetal and heat. See this example of handle_l2fwd_multiflow-2.cfg to
explain the options.

[image: NSB PROX Handle Config File]
See prox options [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D] for details

Now let’s examine the components of the file in detail

	[eal options] - same as the Generator config file. This specified the
EAL (Environmental Abstraction Layer) options. These are default values and
are not changed. See dpdk wiki page [https://www.dpdk.org/].

	[port 0] - This section describes the DPDK Port. The number following
the keyword port usually refers to the DPDK Port Id. usually starting
from 0. Because you can have multiple ports this entry usually
repeated. E.g. For a 2 port setup [port0] and [port 1] and for a 4
port setup [port 0], [port 1], [port 2] and [port 3]:

[port 0]
name=if0
mac=hardware
rx desc=2048
tx desc=2048
promiscuous=yes

	In this example name =if0 assigned the name if0 to the port. Any
name can be assigned to a port.

	mac=hardware sets the MAC address assigned by the hardware to data
from this port.

	rx desc=2048 sets the number of available descriptors to allocate
for receive packets. This can be changed and can effect performance.

	tx desc=2048 sets the number of available descriptors to allocate
for transmit packets. This can be changed and can effect performance.

	promiscuous=yes this enables promiscuous mode for this port.

	[defaults] - Here default operations and settings can be over written.:

[defaults]
mempool size=8K
memcache size=512

	In this example mempool size=8K the number of mbufs per task is
altered. Altering this value could effect performance. See
prox options [https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D] for details.

	memcache size=512 - number of mbufs cached per core, default is 256
this is the cache_size. Altering this value could affect performance.

	[global] - Here application wide setting are supported. Things like
application name, start time, duration and memory configurations can be set
here.
In this example.:

 [global]
 start time=5
 name=Basic Gen

a. ``start time=5`` Time is seconds after which average stats will be
 started.
b. ``name=Handle L2FWD Multiflow (2x)`` Name of the configuration.

	[core 0] - This core is designated the master core. Every Prox
application must have a master core. The master mode must be assigned to
exactly one task, running alone on one core.:

[core 0]
mode=master

	[core 1] - This describes the activity on core 1. Cores can be
configured by means of a set of [core #] sections, where # represents
either:

	an absolute core number: e.g. on a 10-core, dual socket system with
hyper-threading, cores are numbered from 0 to 39.

	PROX allows a core to be identified by a core number, the letter ‘s’,
and a socket number. However NSB PROX is hardware agnostic (physical and
virtual configurations are the same) it is advisable no to use physical
core numbering.

Each core can be assigned with a set of tasks, each running one of the
implemented packet processing modes.:

[core 1]
name=none
task=0
mode=l2fwd
dst mac=@@tester_mac1
rx port=if0
tx port=if1

	name=none - No name assigned to the core.

	task=0 - Each core can run a set of tasks. Starting with 0.
Task 1 can be defined later in this core or can be defined in another
[core 1] section with task=1 later in configuration file.
Sometimes running multiple task related to the same packet on the same
physical core improves performance, however sometimes it is optimal to
move task to a separate core. This is best decided by checking
performance.

	mode=l2fwd - Specifies the action carried out by this task on this
core. Supported modes are: acl, classify, drop,
gredecap, greencap, ipv6_decap, ipv6_encap, l2fwd,
lbnetwork, lbpos, lbqinq, nop, police,
qinqdecapv4, qinqencapv4, qos, routing, impair,
lb5tuple, mirror, unmpls, tagmpls, nat,
decapnsh, encapnsh, gen, genl4 and lat. This code
does l2fwd. i.e. it does the L2FWD.

	dst mac=@@tester_mac1 - The destination mac address of the packet
will be set to the MAC address of Port 1 of destination device.
(The Traffic Generator/Verifier)

	rx port=if0 - This specifies that the packets are received from
Port 0 called if0

	tx port=if1 - This specifies that the packets are transmitted to
Port 1 called if1

In this example we receive a packet on core on a port, carry out operation
on the packet on the core and transmit it on on another port still using
the same task on the same core.

On some implementation you may wish to use multiple tasks, like this.:

[core 1]
name=rx_task
task=0
mode=l2fwd
dst mac=@@tester_p0
rx port=if0
tx cores=1t1
drop=no

name=l2fwd_if0
task=1
mode=nop
rx ring=yes
tx port=if0
drop=no

In this example you can see Core 1/Task 0 called rx_task receives the
packet from if0 and perform the l2fwd. However instead of sending the
packet to a port it sends it to a core see tx cores=1t1. In this case it
sends it to Core 1/Task 1.

Core 1/Task 1 called l2fwd_if0, receives the packet, not from a port but
from the ring. See rx ring=yes. It does not perform any operation on the
packet See mode=none and sends the packets to if0 see
tx port=if0.

It is also possible to implement more complex operations by chaining
multiple operations in sequence and using rings to pass packets from one
core to another.

In this example, we show a Broadband Network Gateway (BNG) with Quality of
Service (QoS). Communication from task to task is via rings.

[image: NSB PROX Config File for BNG_QOS]

3.11.8. Baremetal Configuration File

This is required for baremetal testing. It describes the IP address of the
various ports, the Network devices drivers and MAC addresses and the network
configuration.

In this example we will describe a 2 port configuration. This file is the same
for all 2 port NSB Prox tests on the same platforms/configuration.

[image: NSB PROX Yardstick Config]

Now let’s describe the sections of the file.

	TrafficGen - This section describes the Traffic Generator node of the
test configuration. The name of the node trafficgen_1 must match the
node name in the Test Description File for Baremetal mentioned
earlier. The password attribute of the test needs to be configured. All
other parameters can remain as default settings.

	interfaces - This defines the DPDK interfaces on the Traffic
Generator.

	xe0 is DPDK Port 0. lspci and ./dpdk-devbind.py -s can be used
to provide the interface information. netmask and local_ip should
not be changed

	xe1 is DPDK Port 1. If more than 2 ports are required then xe1
section needs to be repeated and modified accordingly.

	vnf - This section describes the SUT of the test configuration. The
name of the node vnf must match the node name in the
Test Description File for Baremetal mentioned earlier. The password
attribute of the test needs to be configured. All other parameters can
remain as default settings

	interfaces - This defines the DPDK interfaces on the SUT

	xe0 - Same as 3 but for the SUT.

	xe1 - Same as 4 but for the SUT also.

	routing_table - All parameters should remain unchanged.

	nd_route_tbl - All parameters should remain unchanged.

3.11.9. Grafana Dashboard

The grafana dashboard visually displays the results of the tests. The steps
required to produce a grafana dashboard are described here.

	Configure yardstick to use influxDB to store test results. See file
/etc/yardstick/yardstick.conf.

[image: NSB PROX Yardstick Config]

	Specify the dispatcher to use influxDB to store results.

	“target = .. ” - Specify location of influxDB to store results.
“db_name = yardstick” - name of database. Do not change
“username = root” - username to use to store result. (Many tests are
run as root)
“password = … ” - Please set to root user password

	Deploy InfludDB & Grafana. See how to Deploy InfluxDB & Grafana. See
grafana deployment [https://wiki.opnfv.org/display/yardstick/How+to+deploy+InfluxDB+and+Grafana+locally].

	Generate the test data. Run the tests as follows .:

yardstick --debug task start tc_prox_<context>_<test>-ports.yaml

eg.:

yardstick --debug task start tc_prox_heat_context_l2fwd-4.yaml

	Now build the dashboard for the test you just ran. The easiest way to do this is to copy an existing dashboard and rename the
test and the field names. The procedure to do so is described here. See opnfv grafana dashboard [https://wiki.opnfv.org/display/yardstick/How+to+work+with+grafana+dashboard].

3.12. How to run NSB Prox Test on an baremetal environment

In order to run the NSB PROX test.

	Install NSB on Traffic Generator node and Prox in SUT. See
NSB Installation [http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation]

	To enter container:

docker exec -it yardstick /bin/bash

	Install baremetal configuration file (POD files)

	Go to location of PROX tests in container

cd /home/opnfv/repos/yardstick/samples/vnf_samples/nsut/prox

	Install prox-baremetal-2.yam and prox-baremetal-4.yaml for that
topology into this directory as per Baremetal Configuration File

	Install and configure yardstick.conf

cd /etc/yardstick/

Modify /etc/yardstick/yardstick.conf as per yardstick-config-label

	Execute the test. Eg.:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

3.13. How to run NSB Prox Test on an Openstack environment

In order to run the NSB PROX test.

	Install NSB on Openstack deployment node. See NSB Installation [http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation]

	To enter container:

docker exec -it yardstick /bin/bash

	Install configuration file

	Goto location of PROX tests in container

cd /home/opnfv/repos/yardstick/samples/vnf_samples/nsut/prox

	Install and configure yardstick.conf

cd /etc/yardstick/

Modify /etc/yardstick/yardstick.conf as per yardstick-config-label

	Execute the test. Eg.:

yardstick --debug task start ./tc_prox_heat_context_l2fwd-4.yaml

3.14. Frequently Asked Questions

Here is a list of frequently asked questions.

3.14.1. NSB Prox does not work on Baremetal, How do I resolve this?

If PROX NSB does not work on baremetal, problem is either in network
configuration or test file.

	Verify network configuration. Execute existing baremetal test.:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

If test does not work then error in network configuration.

	Check DPDK on Traffic Generator and SUT via:-

/root/dpdk-17./usertools/dpdk-devbind.py

	Verify MAC addresses match prox-baremetal-<ports>.yaml via ifconfig and dpdk-devbind

	Check your eth port is what you expect. You would not be the first person to think that
the port your cable is plugged into is ethX when in fact it is ethY. Use
ethtool to visually confirm that the eth is where you expect.:

ethtool -p ethX

A led should start blinking on port. (On both System-Under-Test and Traffic Generator)

	Check cable.

Install Linux kernel network driver and ensure your ports are
bound to the driver via dpdk-devbind. Bring up port on both
SUT and Traffic Generator and check connection.

	On SUT and on Traffic Generator:

ifconfig ethX/enoX up

	Check link

ethtool ethX/enoX

See Link detected if yes …. Cable is good. If no you have an issue with your cable/port.

	If existing baremetal works then issue is with your test. Check the traffic
generator gen_<test>-<ports>.cfg to ensure it is producing a valid packet.

3.14.2. How do I debug NSB Prox on Baremetal?

	Execute the test as follows:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

	Login to Traffic Generator as root.:

cd
/opt/nsb_bin/prox -f /tmp/gen_<test>-<ports>.cfg

	Login to SUT as root.:

cd
/opt/nsb_bin/prox -f /tmp/handle_<test>-<ports>.cfg

	Now let’s examine the Generator Output. In this case the output of
gen_l2fwd-4.cfg.

[image: NSB PROX Traffic Generator GUI]

Now let’s examine the output

	Indicates the amount of data successfully transmitted on Port 0

	Indicates the amount of data successfully received on port 1

	Indicates the amount of data successfully handled for port 1

It appears what is transmitted is received.

Caution

The number of packets MAY not exactly match because the ports are read in
sequence.

Caution

What is transmitted on PORT X may not always be received on same port.
Please check the Test scenario.

	Now lets examine the SUT Output

[image: NSB PROX SUT GUI]

Now lets examine the output

	What is received on 0 is transmitted on 1, received on 1 transmitted on 0,
received on 2 transmitted on 3 and received on 3 transmitted on 2.

	No packets are Failed.

	No packets are discarded.

We can also dump the packets being received or transmitted via the following commands.

dump Arguments: <core id> <task id> <nb packets>
 Create a hex dump of <nb_packets> from <task_id> on <core_id> showing how
 packets have changed between RX and TX.
dump_rx Arguments: <core id> <task id> <nb packets>
 Create a hex dump of <nb_packets> from <task_id> on <core_id> at RX
dump_tx Arguments: <core id> <task id> <nb packets>
 Create a hex dump of <nb_packets> from <task_id> on <core_id> at TX

eg.:

dump_tx 1 0 1

3.14.3. NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

NSB Prox on Baremetal is a lot more forgiving than NSB Prox on Openstack. A
badly formed packed may still work with PROX on Baremetal. However on
Openstack the packet must be correct and all fields of the header correct.
E.g. A packet with an invalid Protocol ID would still work in Baremetal but
this packet would be rejected by openstack.

	Check the validity of the packet.

	Use a known good packet in your test

	If using Random fields in the traffic generator, disable them and
retry.

3.14.4. How do I debug NSB Prox on Openstack?

	Execute the test as follows:

yardstick --debug task start --keep-deploy ./tc_prox_heat_context_l2fwd-4.yaml

	Access docker image if required via:

docker exec -it yardstick /bin/bash

	Install openstack credentials.

Depending on your openstack deployment, the location of these credentials
may vary.
On this platform I do this via:

scp root@10.237.222.55:/etc/kolla/admin-openrc.sh .
source ./admin-openrc.sh

	List Stack details

	Get the name of the Stack.

[image: NSB PROX openstack stack list]

	Get the Floating IP of the Traffic Generator & SUT

This generates a lot of information. Please note the floating IP of the
VNF and the Traffic Generator.

[image: NSB PROX openstack stack show (Top)]

From here you can see the floating IP Address of the SUT / VNF

[image: NSB PROX openstack stack show (Top)]

From here you can see the floating IP Address of the Traffic Generator

	Get ssh identity file

In the docker container locate the identity file.:

cd /home/opnfv/repos/yardstick/yardstick/resources/files
ls -lt

	Login to SUT as Ubuntu.:

ssh -i ./yardstick_key-01029d1d ubuntu@172.16.2.158

Change to root:

 sudo su

Now continue as baremetal.

	Login to SUT as Ubuntu.:

ssh -i ./yardstick_key-01029d1d ubuntu@172.16.2.156

Change to root:

 sudo su

Now continue as baremetal.

3.14.5. How do I resolve “Quota exceeded for resources”

This usually occurs due to 2 reasons when executing an openstack test.

	One or more stacks already exists and are consuming all resources. To resolve

openstack stack list

Response:

+--------------------------------------+--------------------+-----------------+----------------------+--------------+
| ID | Stack Name | Stack Status | Creation Time | Updated Time |
+--------------------------------------+--------------------+-----------------+----------------------+--------------+
| acb559d7-f575-4266-a2d4-67290b556f15 | yardstick-e05ba5a4 | CREATE_COMPLETE | 2017-12-06T15:00:05Z | None |
| 7edf21ce-8824-4c86-8edb-f7e23801a01b | yardstick-08bda9e3 | CREATE_COMPLETE | 2017-12-06T14:56:43Z | None |
+--------------------------------------+--------------------+-----------------+----------------------+--------------+

In this case 2 stacks already exist.

To remove stack:

openstack stack delete yardstick-08bda9e3
Are you sure you want to delete this stack(s) [y/N]? y

	The openstack configuration quotas are too small.

The solution is to increase the quota. Use below to query existing quotas:

openstack quota show

And to set quota:

openstack quota set <resource>

3.14.6. Openstack CLI fails or hangs. How do I resolve this?

If it fails due to

Missing value auth-url required for auth plugin password

Check your shell environment for Openstack variables. One of them should
contain the authentication URL

OS_AUTH_URL=``https://192.168.72.41:5000/v3``

Or similar. Ensure that openstack configurations are exported.

cat /etc/kolla/admin-openrc.sh

Result

export OS_PROJECT_DOMAIN_NAME=default
export OS_USER_DOMAIN_NAME=default
export OS_PROJECT_NAME=admin
export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=BwwSEZqmUJA676klr9wa052PFjNkz99tOccS9sTc
export OS_AUTH_URL=http://193.168.72.41:35357/v3
export OS_INTERFACE=internal
export OS_IDENTITY_API_VERSION=3
export EXTERNAL_NETWORK=yardstick-public

and visible.

If the Openstack CLI appears to hang, then verify the proxys and no_proxy
are set correctly. They should be similar to

FTP_PROXY="http://<your_proxy>:<port>/"
HTTPS_PROXY="http://<your_proxy>:<port>/"
HTTP_PROXY="http://<your_proxy>:<port>/"
NO_PROXY="localhost,127.0.0.1,10.237.222.55,10.237.223.80,10.237.222.134,.ir.intel.com"
ftp_proxy="http://<your_proxy>:<port>/"
http_proxy="http://<your_proxy>:<port>/"
https_proxy="http://<your_proxy>:<port>/"
no_proxy="localhost,127.0.0.1,10.237.222.55,10.237.223.80,10.237.222.134,.ir.intel.com"

Where

	10.237.222.55 = IP Address of deployment node

	10.237.223.80 = IP Address of Controller node

	10.237.222.134 = IP Address of Compute Node

3.14.7. How to Understand the Grafana output?

[image: NSB PROX Grafana_1]
[image: NSB PROX Grafana_2]
[image: NSB PROX Grafana_3]
[image: NSB PROX Grafana_4]
[image: NSB PROX Grafana_5]
[image: NSB PROX Grafana_6]

	Test Parameters - Test interval, Duration, Tolerated Loss and Test Precision

	No. of packets send and received during test

	Generator Stats - Average Throughput per step (Step Duration is specified by
“Duration” field in A above)

	Packet size

	No. of packets sent by the generator per second per interface in millions
of packets per second.

	No. of packets recieved by the generator per second per interface in millions
of packets per second.

	No. of packets received by the SUT from the generator in millions of packets
per second.

	No. of packets sent by the the SUT to the generator in millions of packets
per second.

	No. of packets sent by the Generator to the SUT per step per interface
in millions of packets per second.

	No. of packets received by the Generator from the SUT per step per interface
in millions of packets per second.

	No. of packets sent and received by the generator and lost by the SUT that
meet the success criteria

	The change in the Percentage of Line Rate used over a test, The MAX and the
MIN should converge to within the interval specified as the
test-precision.

	Packet size supported during test. If N/A appears in any field the
result has not been decided.

	The Theretical Maximum no. of packets per second that can be sent for this
packet size.

	No. of packets sent by the generator in MPPS

	No. of packets received by the generator in MPPS

	No. of packets sent by SUT.

	No. of packets received by the SUT

	Total no. of dropped packets – Packets sent but not received back by the
generator, these may be dropped by the SUT or the generator.

	The tolerated no. of dropped packets.

	Test throughput in Gbps

	
	Latencey per Port
	
	Va - Port XE0

	Vb - Port XE1

	Vc - Port XE0

	Vd - Port XE0

	
	CPU Utilization
	
	Wa - CPU Utilization of the Generator

	Wb - CPU Utilization of the SUT

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | K
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

A

 	
 	API

B

 	
 	Barometer

C

 	
 	collectd

 	
 	context

D

 	
 	Docker

 	DPDK

 	
 	DPI

 	DSCP

F

 	
 	flavor

G

 	
 	Grafana

I

 	
 	IGMP

 	
 	InfluxDB

 	IOPS

K

 	
 	KPI

 	
 	Kubernetes

M

 	
 	MPLS

N

 	
 	NFV

 	NFVI

 	
 	NIC

 	NSB

O

 	
 	OpenStack

P

 	
 	PBFS

 	
 	PROX

Q

 	
 	QoS

R

 	
 	runner

S

 	
 	SampleVNF

 	scenario

 	
 	SLA

 	SR-IOV

 	SUT

T

 	
 	testcase

 	
 	ToS

V

 	
 	VLAN

 	VM

 	
 	VNF

 	VNFC

Test results analysis for Euphrates and Fraser releases

TC002

The round-trip-time (RTT) between 2 VMs on different blades is measured using
ping.

Most test run measurements result on average between 0.39 and 4.00 ms.
Compared with Euphrates release, the average RTT result of the same pod experiences
a slight decline in Fraser release. For example, the average RTT of arm-pod5 is
1.518 in Ehphrates and 1.714 in Fraser. The average RTT of intel-pod18 is 1.6575
ms in Ehphrates and 1.856 ms in Fraser.

{

“huawei-pod2:stable/euphrates”: [0.3925],

“lf-pod2:stable/euphrates”: [0.5315],

“lf-pod1:stable/euphrates”: [0.62],

“huawei-pod2:stable/fraser”: [0.677],

“lf-pod1:stable/fraser”: [0.725],

“flex-pod2:stable/euphrates”: [0.795],

“huawei-pod12:stable/euphrates”: [0.87],

“ericsson-pod1:stable/fraser”: [0.9165],

“huawei-pod12:stable/fraser”: [1.0465],

“lf-pod2:stable/fraser”: [1.2325],

“intel-pod5:stable/euphrates”: [1.25],

“ericsson-virtual3:stable/euphrates”: [1.2655],

“ericsson-pod1:stable/euphrates”: [1.372],

“zte-pod2:stable/fraser”: [1.395],

“arm-pod5:stable/euphrates”: [1.518],

“huawei-virtual4:stable/euphrates”: [1.5355],

“ericsson-virtual4:stable/fraser”: [1.582],

“huawei-virtual3:stable/euphrates”: [1.606],

“intel-pod18:stable/euphrates”: [1.6575],

“huawei-virtual4:stable/fraser”: [1.697],

“huawei-virtual8:stable/euphrates”: [1.709],

“arm-pod5:stable/fraser”: [1.714],

“huawei-virtual3:stable/fraser”: [1.716],

“intel-pod18:stable/fraser”: [1.856],

“huawei-virtual2:stable/euphrates”: [1.872],

“arm-pod6:stable/euphrates”: [1.895],

“huawei-virtual2:stable/fraser”: [1.964],

“huawei-virtual1:stable/fraser”: [1.9765],

“huawei-virtual9:stable/euphrates”: [2.0745],

“arm-pod6:stable/fraser”: [2.209],

“huawei-virtual1:stable/euphrates”: [2.495],

“ericsson-virtual2:stable/euphrates”: [2.7895],

“ericsson-virtual4:stable/euphrates”: [3.768],

“ericsson-virtual1:stable/euphrates”: [3.8035],

“ericsson-virtual3:stable/fraser”: [3.9175],

“ericsson-virtual2:stable/fraser”: [4.004]

}

TC010

The tool we use to measure memory read latency is lmbench, which is a series of
micro benchmarks intended to measure basic operating system and hardware system
metrics. Compared with Euphrates release, the memory read latency of the same pod
also experience a slight decline. Virtual pods seem to have a higher memory read
latency than physical pods. Compared with X86 pods, the memory read latency of
arm pods is significant higher.

{

“ericsson-pod1:stable/euphrates”: [5.7785],

“flex-pod2:stable/euphrates”: [5.908],

“ericsson-virtual1:stable/euphrates”: [6.412],

“intel-pod18:stable/euphrates”: [6.5905],

“intel-pod5:stable/euphrates”: [6.6975],

“ericsson-pod1:stable/fraser”: [7.0645],

“ericsson-virtual4:stable/euphrates”: [7.183],

“intel-pod18:stable/fraser”: [7.4465],

“zte-pod2:stable/fraser”: [8.1865],

“ericsson-virtual2:stable/euphrates”: [8.4985],

“huawei-pod2:stable/euphrates”: [8.877],

“huawei-pod12:stable/euphrates”: [9.091],

“huawei-pod2:stable/fraser”: [9.236],

“huawei-pod12:stable/fraser”: [9.615],

“ericsson-virtual3:stable/euphrates”: [9.719],

“ericsson-virtual2:stable/fraser”: [9.8925],

“huawei-virtual4:stable/euphrates”: [10.1195],

“huawei-virtual3:stable/euphrates”: [10.19],

“huawei-virtual2:stable/fraser”: [10.22],

“huawei-virtual1:stable/euphrates”: [10.3045],

“huawei-virtual9:stable/euphrates”: [10.318],

“ericsson-virtual4:stable/fraser”: [10.5465],

“ericsson-virtual3:stable/fraser”: [10.9355],

“huawei-virtual3:stable/fraser”: [10.95],

“huawei-virtual2:stable/euphrates”: [11.274],

“huawei-virtual4:stable/fraser”: [11.557],

“lf-pod1:stable/euphrates”: [15.7025],

“lf-pod2:stable/euphrates”: [15.8495],

“lf-pod2:stable/fraser”: [16.5595],

“lf-pod1:stable/fraser”: [16.8395],

“arm-pod5:stable/euphrates”: [18.092],

“arm-pod5:stable/fraser”: [18.744],

“huawei-virtual1:stable/fraser”: [19.8235],

“huawei-virtual8:stable/euphrates”: [33.999],

“arm-pod6:stable/euphrates”: [41.5605],

“arm-pod6:stable/fraser”: [55.804]

}

TC011

Iperf3 is a tool for evaluating the packet delay variation between 2 VMs on
different blades. In general, the packet delay variation of the two releases
look similar.

{

“arm-pod6:stable/fraser”: [1],

“ericsson-pod1:stable/fraser”: [1],

“ericsson-virtual2:stable/fraser”: [1],

“ericsson-virtual3:stable/fraser”: [1],

“lf-pod2:stable/fraser”: [1],

“huawei-virtual1:stable/fraser”: [2997],

“huawei-virtual2:stable/euphrates”: [2997],

“flex-pod2:stable/euphrates”: [2997.5],

“huawei-virtual3:stable/euphrates”: [2998],

“huawei-virtual3:stable/fraser”: [2999],

“huawei-virtual9:stable/euphrates”: [3000],

“huawei-virtual8:stable/euphrates”: [3001],

“huawei-virtual4:stable/euphrates”: [3002],

“huawei-virtual4:stable/fraser”: [3002],

“ericsson-virtual3:stable/euphrates”: [3006],

“huawei-virtual1:stable/euphrates”: [3007],

“ericsson-virtual2:stable/euphrates”: [3009],

“intel-pod18:stable/euphrates”: [3010],

“ericsson-virtual4:stable/euphrates”: [3017],

“lf-pod2:stable/euphrates”: [3021],

“arm-pod5:stable/euphrates”: [3022],

“arm-pod6:stable/euphrates”: [3022],

“ericsson-pod1:stable/euphrates”: [3022],

“huawei-pod12:stable/euphrates”: [3022],

“huawei-pod12:stable/fraser”: [3022],

“huawei-pod2:stable/euphrates”: [3022],

“huawei-pod2:stable/fraser”: [3022],

“intel-pod18:stable/fraser”: [3022],

“intel-pod5:stable/euphrates”: [3022],

“lf-pod1:stable/euphrates”: [3022],

“lf-pod1:stable/fraser”: [3022],

“zte-pod2:stable/fraser”: [3022],

“huawei-virtual2:stable/fraser”: [3025]

}

TC012

Lmbench is also used to measure the memory read and write bandwidth.
Like TC010, compared with Euphrates release, the memory read and write bandwidth
of the same pod also experience a slight decline. And compared with X86 pods, the memory
read and write bandwidth of arm pods is significant lower.

{

“lf-pod1:stable/euphrates”: [22912.39],

“lf-pod2:stable/euphrates”: [22637.67],

“lf-pod1:stable/fraser”: [20552.9],

“flex-pod2:stable/euphrates”: [20229.99],

“lf-pod2:stable/fraser”: [20058.925],

“ericsson-pod1:stable/fraser”: [18930.78],

“intel-pod18:stable/fraser”: [18757.545],

“ericsson-virtual1:stable/euphrates”: [17474.965],

“ericsson-pod1:stable/euphrates”: [17127.38],

“ericsson-virtual4:stable/euphrates”: [16219.97],

“ericsson-virtual2:stable/euphrates”: [15652.28],

“ericsson-virtual3:stable/euphrates”: [15551.26],

“ericsson-virtual4:stable/fraser”: [15389.465],

“ericsson-virtual2:stable/fraser”: [15343.79],

“huawei-pod2:stable/euphrates”: [15017.2],

“huawei-pod2:stable/fraser”: [14870.78],

“huawei-virtual4:stable/euphrates”: [14266.34],

“huawei-virtual1:stable/euphrates”: [14233.035],

“huawei-virtual3:stable/euphrates”: [14227.63],

“zte-pod2:stable/fraser”: [14157.99],

“huawei-pod12:stable/euphrates”: [14147.245],

“huawei-pod12:stable/fraser”: [14126.99],

“intel-pod18:stable/euphrates”: [14058.33],

“huawei-virtual3:stable/fraser”: [13929.67],

“huawei-virtual2:stable/euphrates”: [13862.85],

“huawei-virtual4:stable/fraser”: [13847.155],

“huawei-virtual2:stable/fraser”: [13702.92],

“huawei-virtual1:stable/fraser”: [13496.45],

“intel-pod5:stable/euphrates”: [13280.32],

“ericsson-virtual3:stable/fraser”: [12733.19],

“huawei-virtual9:stable/euphrates”: [12559.445],

“huawei-virtual8:stable/euphrates”: [8998.02],

“arm-pod5:stable/euphrates”: [4388.875],

“arm-pod5:stable/fraser”: [4326.11],

“arm-pod6:stable/euphrates”: [4260.2],

“arm-pod6:stable/fraser”: [3809.885]

}

TC014

The Unixbench is used to evaluate the IaaS processing speed with regards to
score of single CPU running and parallel running. Below are the single CPU running
scores. It can be seen that the processing test results vary from scores 715 to 3737.
In general, the single CPU score of the two releases look similar.

{

“lf-pod2:stable/fraser”: [3737.6],

“lf-pod2:stable/euphrates”: [3723.95],

“lf-pod1:stable/fraser”: [3702.7],

“lf-pod1:stable/euphrates”: [3669],

“intel-pod5:stable/euphrates”: [3388.6],

“intel-pod18:stable/euphrates”: [3298.4],

“flex-pod2:stable/euphrates”: [3208.6],

“ericsson-pod1:stable/fraser”: [3131.6],

“intel-pod18:stable/fraser”: [3098.1],

“ericsson-virtual1:stable/euphrates”: [2988.9],

“zte-pod2:stable/fraser”: [2831.4],

“ericsson-pod1:stable/euphrates”: [2669.1],

“ericsson-virtual4:stable/euphrates”: [2598.5],

“ericsson-virtual2:stable/fraser”: [2559.7],

“ericsson-virtual3:stable/euphrates”: [2553.15],

“huawei-pod2:stable/euphrates”: [2531.2],

“huawei-pod2:stable/fraser”: [2528.9],

“ericsson-virtual4:stable/fraser”: [2527.8],

“ericsson-virtual2:stable/euphrates”: [2526.9],

“huawei-virtual4:stable/euphrates”: [2407.4],

“huawei-virtual3:stable/fraser”: [2379.1],

“huawei-virtual3:stable/euphrates”: [2374.6],

“huawei-virtual4:stable/fraser”: [2362.1],

“huawei-virtual2:stable/euphrates”: [2326.4],

“huawei-virtual9:stable/euphrates”: [2324.95],

“huawei-virtual1:stable/euphrates”: [2302.6],

“huawei-virtual2:stable/fraser”: [2299.3],

“huawei-pod12:stable/euphrates”: [2232.2],

“huawei-pod12:stable/fraser”: [2229],

“huawei-virtual1:stable/fraser”: [2171.3],

“ericsson-virtual3:stable/fraser”: [2104.8],

“huawei-virtual8:stable/euphrates”: [2085.3],

“arm-pod5:stable/fraser”: [1764.2],

“arm-pod5:stable/euphrates”: [1754.4],

“arm-pod6:stable/euphrates”: [716.15],

“arm-pod6:stable/fraser”: [715.4]

}

TC069

With the block size changing from 1 kb to 512 kb, the memory write bandwidth
tends to become larger first and then smaller within every run test. Below are
the scores for 32mb block array.

{

“intel-pod18:stable/euphrates”: [18871.79],

“intel-pod18:stable/fraser”: [16939.24],

“intel-pod5:stable/euphrates”: [16055.79],

“arm-pod6:stable/euphrates”: [13327.02],

“arm-pod6:stable/fraser”: [11895.71],

“flex-pod2:stable/euphrates”: [9384.585],

“zte-pod2:stable/fraser”: [9375.33],

“ericsson-pod1:stable/euphrates”: [9331.535],

“huawei-pod12:stable/euphrates”: [9164.88],

“ericsson-pod1:stable/fraser”: [9140.42],

“huawei-pod2:stable/euphrates”: [9026.52],

“huawei-pod12:stable/fraser”: [8993.37],

“huawei-virtual9:stable/euphrates”: [8825.805],

“huawei-pod2:stable/fraser”: [8794.01],

“huawei-virtual2:stable/fraser”: [7670.21],

“ericsson-virtual1:stable/euphrates”: [7615.97],

“ericsson-virtual4:stable/euphrates”: [7539.23],

“arm-pod5:stable/fraser”: [7479.32],

“arm-pod5:stable/euphrates”: [7403.38],

“huawei-virtual3:stable/euphrates”: [7247.89],

“ericsson-virtual2:stable/fraser”: [7219.21],

“huawei-virtual2:stable/euphrates”: [7205.35],

“huawei-virtual1:stable/euphrates”: [7196.405],

“ericsson-virtual3:stable/euphrates”: [7173.72],

“huawei-virtual4:stable/euphrates”: [7131.47],

“ericsson-virtual2:stable/euphrates”: [7129.08],

“huawei-virtual4:stable/fraser”: [7059.045],

“huawei-virtual3:stable/fraser”: [7023.57],

“lf-pod1:stable/euphrates”: [6928.18],

“lf-pod2:stable/euphrates”: [6875.88],

“lf-pod2:stable/fraser”: [6834.7],

“lf-pod1:stable/fraser”: [6775.27],

“ericsson-virtual4:stable/fraser”: [6522.86],

“ericsson-virtual3:stable/fraser”: [5835.59],

“huawei-virtual8:stable/euphrates”: [5729.705],

“huawei-virtual1:stable/fraser”: [5617.12]

}

TC082

For this test case, we use perf to measure context-switches under load.
High context switch rates are not themselves an issue, but they may point the
way to a more significant problem.

{

“zte-pod2:stable/fraser”: [306.5],

“huawei-pod12:stable/euphrates”: [316],

“lf-pod2:stable/fraser”: [337.5],

“intel-pod18:stable/euphrates”: [340],

“intel-pod18:stable/fraser”: [343.5],

“intel-pod5:stable/euphrates”: [357.5],

“ericsson-pod1:stable/euphrates”: [384],

“lf-pod2:stable/euphrates”: [394.5],

“huawei-pod12:stable/fraser”: [399],

“lf-pod1:stable/euphrates”: [435],

“lf-pod1:stable/fraser”: [454],

“flex-pod2:stable/euphrates”: [476],

“huawei-pod2:stable/euphrates”: [518],

“huawei-pod2:stable/fraser”: [544.5],

“arm-pod5:stable/euphrates”: [869.5],

“huawei-virtual9:stable/euphrates”: [1002],

“huawei-virtual4:stable/fraser”: [1138],

“huawei-virtual4:stable/euphrates”: [1174],

“huawei-virtual3:stable/euphrates”: [1239],

“ericsson-pod1:stable/fraser”: [1305],

“huawei-virtual2:stable/euphrates”: [1430],

“huawei-virtual3:stable/fraser”: [1433],

“huawei-virtual1:stable/fraser”: [1470],

“huawei-virtual1:stable/euphrates”: [1489],

“arm-pod6:stable/fraser”: [1738.5],

“arm-pod6:stable/euphrates”: [1883.5]

}

TC083

TC083 measures network latency and throughput between VMs using netperf.
The test results shown below are for UDP throughout.

{

“lf-pod1:stable/euphrates”: [2204.42],

“lf-pod2:stable/fraser”: [1893.39],

“intel-pod18:stable/euphrates”: [1835.55],

“lf-pod2:stable/euphrates”: [1676.705],

“intel-pod5:stable/euphrates”: [1612.555],

“zte-pod2:stable/fraser”: [1543.995],

“lf-pod1:stable/fraser”: [1480.86],

“intel-pod18:stable/fraser”: [1417.015],

“flex-pod2:stable/euphrates”: [1370.23],

“huawei-pod12:stable/euphrates”: [1300.12]

}

Yardstick test results

Yardstick test tesult document overview

This document provides an overview of the results of test cases developed by
the OPNFV Yardstick Project, executed on OPNFV community labs.

Yardstick project is described in Yardstick user guide.

Yardstick is run systematically at the end of an OPNFV fresh installation.
The system under test (SUT) is installed by the installer Apex, Compass, Fuel
or Joid on Performance Optimized Datacenter (POD); One single installer per
POD. All the runnable test cases are run sequentially. The installer and the
POD are considered to evaluate whether the test case can be run or not. That is
why all the number of test cases may vary from 1 installer to another and from
1 POD to POD.

OPNFV CI provides automated build, deploy and testing for
the software developed in OPNFV. Unless stated, the reported tests are
automated via Jenkins Jobs. Yardsrick test results from OPNFV Continous
Integration can be found in the following dashboard:

	
	Yardstick Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main]: uses influx DB to store Yardstick CI test results and
	Grafana for visualization (user: opnfv/ password: opnfv)

The results of executed test cases are available in Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main] and all logs are
stored in Jenkins [https://build.opnfv.org/ci/view/yardstick/].

It was not possible to execute the entire Yardstick test cases suite on the
PODs assigned for release verification over a longer period of time, due to
continuous work on the software components and blocking faults either on
environment, features or test framework.

The list of scenarios supported by each installer can be described as follows:

	Scenario

	Apex

	Compass

	Fuel-arm

	Fuel

	Joid

	Daisy

	os-nosdn-nofeature-noha

	X

	
	
	
	X

	

	os-nosdn-nofeature-ha

	X

	
	X

	X

	X

	X

	os-nosdn-bar-noha

	X

	
	
	
	
	

	os-nosdn-bar-ha

	X

	
	
	
	
	

	os-odl-bgpvpn-ha

	X

	
	
	
	
	

	os-nosdn-calipso-noha

	X

	
	
	
	
	

	os-nosdn-kvm-ha

	
	X

	
	
	
	

	os-odl_l3-nofeature-ha

	
	X

	
	
	
	

	os-odl-sfc-ha

	
	X

	
	
	
	

	os-odl-nofeature-ha

	
	
	
	X

	
	X

	os-nosdn-ovs-ha

	
	
	
	X

	
	

To qualify for release, the scenarios must have deployed and been successfully
tested in four consecutive installations to establish stability of deployment
and feature capability. It is a recommendation to run Yardstick test
cases over a longer period of time in order to better understand the behavior
of the system under test.

References

	IEEE Std 829-2008. “Standard for Software and System Test Documentation”.

	OPNFV Fraser release note for Yardstick.

Results listed by test cases

The following sections describe the yardstick test case results as evaluated
for the OPNFV Fraser release scenario validation runs. Each section describes
the determined state of the specific test case as executed in the Fraser release
process. All test date are analyzed using TOM [https://wiki.opnfv.org/display/testing/R+post-processing+of+the+Yardstick+results] tool.

Scenario Results

The following documents contain results of Yardstick test cases executed on
OPNFV labs, triggered by OPNFV CI pipeline, documented per test case.

For hardware details of OPNFV labs, please visit: https://wiki.opnfv.org/display/pharos/Community+Labs

	Test results for TC002 network latency

	Test results for TC010 memory read latency

	Test results for TC011 packet delay variation

	Test results for TC012 memory read/write bandwidth

	Test results for TC014 cpu processing speed

	Test results for TC069 memory write bandwidth

	Test results for TC082 context switches under load

	Test results for TC083 network throughput between VMs

Test results of executed tests are avilable in Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main] and logs in Jenkins [https://build.opnfv.org/ci/view/yardstick/].

Test results for Fraser release are collected from April 10, 2018 to May 13, 2018.

Feature Test Results

The following features were verified by Yardstick test cases:

	IPv6

	HA (see Test Results for yardstick-opnfv-ha)

	KVM

	Parser

	StorPerf

Note

The test cases for IPv6 and Parser Projects are included in the
compass scenario.

Test results analysis for Euphrates and Fraser releases

TC002

The round-trip-time (RTT) between 2 VMs on different blades is measured using
ping.

Most test run measurements result on average between 0.39 and 4.00 ms.
Compared with Euphrates release, the average RTT result of the same pod experiences
a slight decline in Fraser release. For example, the average RTT of arm-pod5 is
1.518 in Ehphrates and 1.714 in Fraser. The average RTT of intel-pod18 is 1.6575
ms in Ehphrates and 1.856 ms in Fraser.

{

“huawei-pod2:stable/euphrates”: [0.3925],

“lf-pod2:stable/euphrates”: [0.5315],

“lf-pod1:stable/euphrates”: [0.62],

“huawei-pod2:stable/fraser”: [0.677],

“lf-pod1:stable/fraser”: [0.725],

“flex-pod2:stable/euphrates”: [0.795],

“huawei-pod12:stable/euphrates”: [0.87],

“ericsson-pod1:stable/fraser”: [0.9165],

“huawei-pod12:stable/fraser”: [1.0465],

“lf-pod2:stable/fraser”: [1.2325],

“intel-pod5:stable/euphrates”: [1.25],

“ericsson-virtual3:stable/euphrates”: [1.2655],

“ericsson-pod1:stable/euphrates”: [1.372],

“zte-pod2:stable/fraser”: [1.395],

“arm-pod5:stable/euphrates”: [1.518],

“huawei-virtual4:stable/euphrates”: [1.5355],

“ericsson-virtual4:stable/fraser”: [1.582],

“huawei-virtual3:stable/euphrates”: [1.606],

“intel-pod18:stable/euphrates”: [1.6575],

“huawei-virtual4:stable/fraser”: [1.697],

“huawei-virtual8:stable/euphrates”: [1.709],

“arm-pod5:stable/fraser”: [1.714],

“huawei-virtual3:stable/fraser”: [1.716],

“intel-pod18:stable/fraser”: [1.856],

“huawei-virtual2:stable/euphrates”: [1.872],

“arm-pod6:stable/euphrates”: [1.895],

“huawei-virtual2:stable/fraser”: [1.964],

“huawei-virtual1:stable/fraser”: [1.9765],

“huawei-virtual9:stable/euphrates”: [2.0745],

“arm-pod6:stable/fraser”: [2.209],

“huawei-virtual1:stable/euphrates”: [2.495],

“ericsson-virtual2:stable/euphrates”: [2.7895],

“ericsson-virtual4:stable/euphrates”: [3.768],

“ericsson-virtual1:stable/euphrates”: [3.8035],

“ericsson-virtual3:stable/fraser”: [3.9175],

“ericsson-virtual2:stable/fraser”: [4.004]

}

TC010

The tool we use to measure memory read latency is lmbench, which is a series of
micro benchmarks intended to measure basic operating system and hardware system
metrics. Compared with Euphrates release, the memory read latency of the same pod
also experience a slight decline. Virtual pods seem to have a higher memory read
latency than physical pods. Compared with X86 pods, the memory read latency of
arm pods is significant higher.

{

“ericsson-pod1:stable/euphrates”: [5.7785],

“flex-pod2:stable/euphrates”: [5.908],

“ericsson-virtual1:stable/euphrates”: [6.412],

“intel-pod18:stable/euphrates”: [6.5905],

“intel-pod5:stable/euphrates”: [6.6975],

“ericsson-pod1:stable/fraser”: [7.0645],

“ericsson-virtual4:stable/euphrates”: [7.183],

“intel-pod18:stable/fraser”: [7.4465],

“zte-pod2:stable/fraser”: [8.1865],

“ericsson-virtual2:stable/euphrates”: [8.4985],

“huawei-pod2:stable/euphrates”: [8.877],

“huawei-pod12:stable/euphrates”: [9.091],

“huawei-pod2:stable/fraser”: [9.236],

“huawei-pod12:stable/fraser”: [9.615],

“ericsson-virtual3:stable/euphrates”: [9.719],

“ericsson-virtual2:stable/fraser”: [9.8925],

“huawei-virtual4:stable/euphrates”: [10.1195],

“huawei-virtual3:stable/euphrates”: [10.19],

“huawei-virtual2:stable/fraser”: [10.22],

“huawei-virtual1:stable/euphrates”: [10.3045],

“huawei-virtual9:stable/euphrates”: [10.318],

“ericsson-virtual4:stable/fraser”: [10.5465],

“ericsson-virtual3:stable/fraser”: [10.9355],

“huawei-virtual3:stable/fraser”: [10.95],

“huawei-virtual2:stable/euphrates”: [11.274],

“huawei-virtual4:stable/fraser”: [11.557],

“lf-pod1:stable/euphrates”: [15.7025],

“lf-pod2:stable/euphrates”: [15.8495],

“lf-pod2:stable/fraser”: [16.5595],

“lf-pod1:stable/fraser”: [16.8395],

“arm-pod5:stable/euphrates”: [18.092],

“arm-pod5:stable/fraser”: [18.744],

“huawei-virtual1:stable/fraser”: [19.8235],

“huawei-virtual8:stable/euphrates”: [33.999],

“arm-pod6:stable/euphrates”: [41.5605],

“arm-pod6:stable/fraser”: [55.804]

}

TC011

Iperf3 is a tool for evaluating the packet delay variation between 2 VMs on
different blades. In general, the packet delay variation of the two releases
look similar.

{

“arm-pod6:stable/fraser”: [1],

“ericsson-pod1:stable/fraser”: [1],

“ericsson-virtual2:stable/fraser”: [1],

“ericsson-virtual3:stable/fraser”: [1],

“lf-pod2:stable/fraser”: [1],

“huawei-virtual1:stable/fraser”: [2997],

“huawei-virtual2:stable/euphrates”: [2997],

“flex-pod2:stable/euphrates”: [2997.5],

“huawei-virtual3:stable/euphrates”: [2998],

“huawei-virtual3:stable/fraser”: [2999],

“huawei-virtual9:stable/euphrates”: [3000],

“huawei-virtual8:stable/euphrates”: [3001],

“huawei-virtual4:stable/euphrates”: [3002],

“huawei-virtual4:stable/fraser”: [3002],

“ericsson-virtual3:stable/euphrates”: [3006],

“huawei-virtual1:stable/euphrates”: [3007],

“ericsson-virtual2:stable/euphrates”: [3009],

“intel-pod18:stable/euphrates”: [3010],

“ericsson-virtual4:stable/euphrates”: [3017],

“lf-pod2:stable/euphrates”: [3021],

“arm-pod5:stable/euphrates”: [3022],

“arm-pod6:stable/euphrates”: [3022],

“ericsson-pod1:stable/euphrates”: [3022],

“huawei-pod12:stable/euphrates”: [3022],

“huawei-pod12:stable/fraser”: [3022],

“huawei-pod2:stable/euphrates”: [3022],

“huawei-pod2:stable/fraser”: [3022],

“intel-pod18:stable/fraser”: [3022],

“intel-pod5:stable/euphrates”: [3022],

“lf-pod1:stable/euphrates”: [3022],

“lf-pod1:stable/fraser”: [3022],

“zte-pod2:stable/fraser”: [3022],

“huawei-virtual2:stable/fraser”: [3025]

}

TC012

Lmbench is also used to measure the memory read and write bandwidth.
Like TC010, compared with Euphrates release, the memory read and write bandwidth
of the same pod also experience a slight decline. And compared with X86 pods, the memory
read and write bandwidth of arm pods is significant lower.

{

“lf-pod1:stable/euphrates”: [22912.39],

“lf-pod2:stable/euphrates”: [22637.67],

“lf-pod1:stable/fraser”: [20552.9],

“flex-pod2:stable/euphrates”: [20229.99],

“lf-pod2:stable/fraser”: [20058.925],

“ericsson-pod1:stable/fraser”: [18930.78],

“intel-pod18:stable/fraser”: [18757.545],

“ericsson-virtual1:stable/euphrates”: [17474.965],

“ericsson-pod1:stable/euphrates”: [17127.38],

“ericsson-virtual4:stable/euphrates”: [16219.97],

“ericsson-virtual2:stable/euphrates”: [15652.28],

“ericsson-virtual3:stable/euphrates”: [15551.26],

“ericsson-virtual4:stable/fraser”: [15389.465],

“ericsson-virtual2:stable/fraser”: [15343.79],

“huawei-pod2:stable/euphrates”: [15017.2],

“huawei-pod2:stable/fraser”: [14870.78],

“huawei-virtual4:stable/euphrates”: [14266.34],

“huawei-virtual1:stable/euphrates”: [14233.035],

“huawei-virtual3:stable/euphrates”: [14227.63],

“zte-pod2:stable/fraser”: [14157.99],

“huawei-pod12:stable/euphrates”: [14147.245],

“huawei-pod12:stable/fraser”: [14126.99],

“intel-pod18:stable/euphrates”: [14058.33],

“huawei-virtual3:stable/fraser”: [13929.67],

“huawei-virtual2:stable/euphrates”: [13862.85],

“huawei-virtual4:stable/fraser”: [13847.155],

“huawei-virtual2:stable/fraser”: [13702.92],

“huawei-virtual1:stable/fraser”: [13496.45],

“intel-pod5:stable/euphrates”: [13280.32],

“ericsson-virtual3:stable/fraser”: [12733.19],

“huawei-virtual9:stable/euphrates”: [12559.445],

“huawei-virtual8:stable/euphrates”: [8998.02],

“arm-pod5:stable/euphrates”: [4388.875],

“arm-pod5:stable/fraser”: [4326.11],

“arm-pod6:stable/euphrates”: [4260.2],

“arm-pod6:stable/fraser”: [3809.885]

}

TC014

The Unixbench is used to evaluate the IaaS processing speed with regards to
score of single CPU running and parallel running. Below are the single CPU running
scores. It can be seen that the processing test results vary from scores 715 to 3737.
In general, the single CPU score of the two releases look similar.

{

“lf-pod2:stable/fraser”: [3737.6],

“lf-pod2:stable/euphrates”: [3723.95],

“lf-pod1:stable/fraser”: [3702.7],

“lf-pod1:stable/euphrates”: [3669],

“intel-pod5:stable/euphrates”: [3388.6],

“intel-pod18:stable/euphrates”: [3298.4],

“flex-pod2:stable/euphrates”: [3208.6],

“ericsson-pod1:stable/fraser”: [3131.6],

“intel-pod18:stable/fraser”: [3098.1],

“ericsson-virtual1:stable/euphrates”: [2988.9],

“zte-pod2:stable/fraser”: [2831.4],

“ericsson-pod1:stable/euphrates”: [2669.1],

“ericsson-virtual4:stable/euphrates”: [2598.5],

“ericsson-virtual2:stable/fraser”: [2559.7],

“ericsson-virtual3:stable/euphrates”: [2553.15],

“huawei-pod2:stable/euphrates”: [2531.2],

“huawei-pod2:stable/fraser”: [2528.9],

“ericsson-virtual4:stable/fraser”: [2527.8],

“ericsson-virtual2:stable/euphrates”: [2526.9],

“huawei-virtual4:stable/euphrates”: [2407.4],

“huawei-virtual3:stable/fraser”: [2379.1],

“huawei-virtual3:stable/euphrates”: [2374.6],

“huawei-virtual4:stable/fraser”: [2362.1],

“huawei-virtual2:stable/euphrates”: [2326.4],

“huawei-virtual9:stable/euphrates”: [2324.95],

“huawei-virtual1:stable/euphrates”: [2302.6],

“huawei-virtual2:stable/fraser”: [2299.3],

“huawei-pod12:stable/euphrates”: [2232.2],

“huawei-pod12:stable/fraser”: [2229],

“huawei-virtual1:stable/fraser”: [2171.3],

“ericsson-virtual3:stable/fraser”: [2104.8],

“huawei-virtual8:stable/euphrates”: [2085.3],

“arm-pod5:stable/fraser”: [1764.2],

“arm-pod5:stable/euphrates”: [1754.4],

“arm-pod6:stable/euphrates”: [716.15],

“arm-pod6:stable/fraser”: [715.4]

}

TC069

With the block size changing from 1 kb to 512 kb, the memory write bandwidth
tends to become larger first and then smaller within every run test. Below are
the scores for 32mb block array.

{

“intel-pod18:stable/euphrates”: [18871.79],

“intel-pod18:stable/fraser”: [16939.24],

“intel-pod5:stable/euphrates”: [16055.79],

“arm-pod6:stable/euphrates”: [13327.02],

“arm-pod6:stable/fraser”: [11895.71],

“flex-pod2:stable/euphrates”: [9384.585],

“zte-pod2:stable/fraser”: [9375.33],

“ericsson-pod1:stable/euphrates”: [9331.535],

“huawei-pod12:stable/euphrates”: [9164.88],

“ericsson-pod1:stable/fraser”: [9140.42],

“huawei-pod2:stable/euphrates”: [9026.52],

“huawei-pod12:stable/fraser”: [8993.37],

“huawei-virtual9:stable/euphrates”: [8825.805],

“huawei-pod2:stable/fraser”: [8794.01],

“huawei-virtual2:stable/fraser”: [7670.21],

“ericsson-virtual1:stable/euphrates”: [7615.97],

“ericsson-virtual4:stable/euphrates”: [7539.23],

“arm-pod5:stable/fraser”: [7479.32],

“arm-pod5:stable/euphrates”: [7403.38],

“huawei-virtual3:stable/euphrates”: [7247.89],

“ericsson-virtual2:stable/fraser”: [7219.21],

“huawei-virtual2:stable/euphrates”: [7205.35],

“huawei-virtual1:stable/euphrates”: [7196.405],

“ericsson-virtual3:stable/euphrates”: [7173.72],

“huawei-virtual4:stable/euphrates”: [7131.47],

“ericsson-virtual2:stable/euphrates”: [7129.08],

“huawei-virtual4:stable/fraser”: [7059.045],

“huawei-virtual3:stable/fraser”: [7023.57],

“lf-pod1:stable/euphrates”: [6928.18],

“lf-pod2:stable/euphrates”: [6875.88],

“lf-pod2:stable/fraser”: [6834.7],

“lf-pod1:stable/fraser”: [6775.27],

“ericsson-virtual4:stable/fraser”: [6522.86],

“ericsson-virtual3:stable/fraser”: [5835.59],

“huawei-virtual8:stable/euphrates”: [5729.705],

“huawei-virtual1:stable/fraser”: [5617.12]

}

TC082

For this test case, we use perf to measure context-switches under load.
High context switch rates are not themselves an issue, but they may point the
way to a more significant problem.

{

“zte-pod2:stable/fraser”: [306.5],

“huawei-pod12:stable/euphrates”: [316],

“lf-pod2:stable/fraser”: [337.5],

“intel-pod18:stable/euphrates”: [340],

“intel-pod18:stable/fraser”: [343.5],

“intel-pod5:stable/euphrates”: [357.5],

“ericsson-pod1:stable/euphrates”: [384],

“lf-pod2:stable/euphrates”: [394.5],

“huawei-pod12:stable/fraser”: [399],

“lf-pod1:stable/euphrates”: [435],

“lf-pod1:stable/fraser”: [454],

“flex-pod2:stable/euphrates”: [476],

“huawei-pod2:stable/euphrates”: [518],

“huawei-pod2:stable/fraser”: [544.5],

“arm-pod5:stable/euphrates”: [869.5],

“huawei-virtual9:stable/euphrates”: [1002],

“huawei-virtual4:stable/fraser”: [1138],

“huawei-virtual4:stable/euphrates”: [1174],

“huawei-virtual3:stable/euphrates”: [1239],

“ericsson-pod1:stable/fraser”: [1305],

“huawei-virtual2:stable/euphrates”: [1430],

“huawei-virtual3:stable/fraser”: [1433],

“huawei-virtual1:stable/fraser”: [1470],

“huawei-virtual1:stable/euphrates”: [1489],

“arm-pod6:stable/fraser”: [1738.5],

“arm-pod6:stable/euphrates”: [1883.5]

}

TC083

TC083 measures network latency and throughput between VMs using netperf.
The test results shown below are for UDP throughout.

{

“lf-pod1:stable/euphrates”: [2204.42],

“lf-pod2:stable/fraser”: [1893.39],

“intel-pod18:stable/euphrates”: [1835.55],

“lf-pod2:stable/euphrates”: [1676.705],

“intel-pod5:stable/euphrates”: [1612.555],

“zte-pod2:stable/fraser”: [1543.995],

“lf-pod1:stable/fraser”: [1480.86],

“intel-pod18:stable/fraser”: [1417.015],

“flex-pod2:stable/euphrates”: [1370.23],

“huawei-pod12:stable/euphrates”: [1300.12]

}

Test Results for yardstick-opnfv-ha

Details

There are two test cases, TC019 and TC025, for high availability (HA) test of
OPNFV platform, and both test cases were executed in CMCC’s lab with 3+2 HA
deployment, where the installer is Arno SR1 release of fuel.

TC019

This test case verifies the high availability of the openstack service, i.e.
“nova-api”, on controller node.
There are one attacker, “kill-process” which kills all “nova-api” processes,
and two monitors, “openstack-cmd” monitoring “nova-api” service by openstack
command “nova image-list”, while “process” monitor checks whether “nova-api”
process is running. Please see the test case description document for detail.

Overview of test results

The service_outage_time of “nova image-list” is 0 seconds, while the
process_recover_time of “nova-api” is 300 seconds which equals the running time
of this test case, that means the “nova-api” service can’t automatiocally
recover itself.

Detailed test results

All “nova-api” process on the selected controller node was killed, and results
of two monitors were collected. Specifically, the results of “nova image-list”
request were collected from compute node and the status of “nova-api” process
were collected from the selected controller node.

Each monitor was running in a single process. The running time of each monitor
was about 300 seconds with no waiting time between twice monitor running. For
“nova image-list”, the running times is 127, that’s to say there is one
openstack command request every 2.36 seconds; while the running times is 141
for “nova-api” process checking, the accurancy is about 2.13 seconds.

The outage time of each monitor, which the name is “service_outage_time” for
“openstack-cmd” monitor and “process_recover_time” for “process” monitor, is
defined as the duration from the begin time of the first failure request to the
end time of the last failure request.

All “nova image-list” requestes were success, so the service_outage_time of
“nova image-list” is 0 second, while “nova-api” processes were not running for
all “process” checking, so the process_recover_time of “nova-api” is 300s.

Rationale for decisions

The service_outage_time is 0 second, that means the failover time of openstack
service is less than 2.36s, which is the period of each request. However, the
process_recover_time equals test case runing time, that means the process is
not automatically recovered, so this test case is fail.

TC025

This test case verifies the high availability of controller node. When one of
the controller node abnormally shutdown, the service provided should be OK.
There are one attacker, “kill-process” which kills all “nova-api” processes,
and two “openstack-cmd” monitors, one monitoring openstack command
“nova image-list” and the other monitoring “neutron router-list”.
Please see the test case description document for detail.

Overview of test results

The both service_outage_time of “nova image-list” and “neutron router-list”
were 0 second.

Detailed test results

A selected controller node was shutdown, and results of two monitors were
collected from compute node.

The return results of “nova image-list” and “neutron router-list” requests from
compute node were collected, then the failure requestion time were statistic
service_outage_time of corresponding service.

Each monitor was running in a single process. The running time of each monitor
was about 300 seconds with no waiting time between twice monitor running. For
“nova image-list”, the running times is 49, that’s to say there is one
openstack command request every 6.12 seconds; while the running times is 28 for
“neutron router-list”, the accurancy is about 10.71 seconds.

The “service_outage_time” for two monitors is defined as the duration from the
begin time of the first failure request to the end time of the last failure
request.

All “nova image-list” and “neutron router-list” requestes were success, so the
service_outage_time of both two monitor were 0 second.

Rationale for decisions

As service_outage_time of all monitors are 0 second, that means there are none
failure request in this test case running time, this test case is passed.

Conclusions and recommendations

The TC019 shows the killed process will be not automatically recovered, which
should be imporved.

There are several improvement points for HA test:
a) Running test cases in different enveriment deployed by different installers,
such as compass4nfv, apex and joid, with different versiones.
b) The period of each request is a little long, it needs more accurate test
method.
c) More test cases with different faults and different monitors are needed.

Test Results for yardstick-opnfv-kvm

Details

Overview of test results

Detailed test results

Rationale for decisions

Conclusions and recommendations

Test Results for yardstick-opnfv-parser

Details

Overview of test results

Detailed test results

Rationale for decisions

Conclusions and recommendations

Yardstick test tesult document overview

This document provides an overview of the results of test cases developed by
the OPNFV Yardstick Project, executed on OPNFV community labs.

Yardstick project is described in Yardstick user guide.

Yardstick is run systematically at the end of an OPNFV fresh installation.
The system under test (SUT) is installed by the installer Apex, Compass, Fuel
or Joid on Performance Optimized Datacenter (POD); One single installer per
POD. All the runnable test cases are run sequentially. The installer and the
POD are considered to evaluate whether the test case can be run or not. That is
why all the number of test cases may vary from 1 installer to another and from
1 POD to POD.

OPNFV CI provides automated build, deploy and testing for
the software developed in OPNFV. Unless stated, the reported tests are
automated via Jenkins Jobs. Yardsrick test results from OPNFV Continous
Integration can be found in the following dashboard:

	
	Yardstick Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main]: uses influx DB to store Yardstick CI test results and
	Grafana for visualization (user: opnfv/ password: opnfv)

The results of executed test cases are available in Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main] and all logs are
stored in Jenkins [https://build.opnfv.org/ci/view/yardstick/].

It was not possible to execute the entire Yardstick test cases suite on the
PODs assigned for release verification over a longer period of time, due to
continuous work on the software components and blocking faults either on
environment, features or test framework.

The list of scenarios supported by each installer can be described as follows:

	Scenario

	Apex

	Compass

	Fuel-arm

	Fuel

	Joid

	Daisy

	os-nosdn-nofeature-noha

	X

	
	
	
	X

	

	os-nosdn-nofeature-ha

	X

	
	X

	X

	X

	X

	os-nosdn-bar-noha

	X

	
	
	
	
	

	os-nosdn-bar-ha

	X

	
	
	
	
	

	os-odl-bgpvpn-ha

	X

	
	
	
	
	

	os-nosdn-calipso-noha

	X

	
	
	
	
	

	os-nosdn-kvm-ha

	
	X

	
	
	
	

	os-odl_l3-nofeature-ha

	
	X

	
	
	
	

	os-odl-sfc-ha

	
	X

	
	
	
	

	os-odl-nofeature-ha

	
	
	
	X

	
	X

	os-nosdn-ovs-ha

	
	
	
	X

	
	

To qualify for release, the scenarios must have deployed and been successfully
tested in four consecutive installations to establish stability of deployment
and feature capability. It is a recommendation to run Yardstick test
cases over a longer period of time in order to better understand the behavior
of the system under test.

References

	IEEE Std 829-2008. “Standard for Software and System Test Documentation”.

	OPNFV Fraser release note for Yardstick.

Results listed by test cases

The following sections describe the yardstick test case results as evaluated
for the OPNFV Fraser release scenario validation runs. Each section describes
the determined state of the specific test case as executed in the Fraser release
process. All test date are analyzed using TOM [https://wiki.opnfv.org/display/testing/R+post-processing+of+the+Yardstick+results] tool.

Scenario Results

The following documents contain results of Yardstick test cases executed on
OPNFV labs, triggered by OPNFV CI pipeline, documented per test case.

For hardware details of OPNFV labs, please visit: https://wiki.opnfv.org/display/pharos/Community+Labs

	Test results for TC002 network latency

	Test results for TC010 memory read latency

	Test results for TC011 packet delay variation

	Test results for TC012 memory read/write bandwidth

	Test results for TC014 cpu processing speed

	Test results for TC069 memory write bandwidth

	Test results for TC082 context switches under load

	Test results for TC083 network throughput between VMs

Test results of executed tests are avilable in Dashboard [http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main] and logs in Jenkins [https://build.opnfv.org/ci/view/yardstick/].

Test results for Fraser release are collected from April 10, 2018 to May 13, 2018.

Feature Test Results

The following features were verified by Yardstick test cases:

	IPv6

	HA (see Test Results for yardstick-opnfv-ha)

	KVM

	Parser

	StorPerf

Note

The test cases for IPv6 and Parser Projects are included in the
compass scenario.

Test results for TC002 network latency

Overview of test case

TC002 verifies that network latency is within acceptable boundaries when packets travel between hosts located on same or different compute blades.
Ping packets (ICMP protocol’s mandatory ECHO_REQUEST datagram) are sent from host VM to target VM(s) to elicit ICMP ECHO_RESPONSE.

Metric: RTT (Round Trip Time)
Unit: ms

Euphrates release

Test results per scenario and pod (lower is better):

{

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [0.214],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [0.309],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [0.3145],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [0.3585],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [0.3765],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [0.403],

“os-odl-sfc-ha:huawei-pod2:compass”: [0.413],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [0.494],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [0.5715],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [0.5785],

“os-odl-sfc-ha:lf-pod1:apex”: [0.617],

“os-odl-nofeature-ha:lf-pod1:apex”: [0.62],

“os-nosdn-bar-noha:lf-pod1:apex”: [0.632],

“os-odl-nofeature-noha:lf-pod1:apex”: [0.635],

“os-odl-bgpvpn-ha:lf-pod1:apex”: [0.658],

“os-odl-sfc-noha:lf-pod1:apex”: [0.663],

“os-nosdn-bar-ha:lf-pod1:apex”: [0.668],

“os-ovn-nofeature-noha:lf-pod1:apex”: [0.668],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [0.6815],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [0.7005],

“os-nosdn-bar-ha:huawei-pod2:compass”: [0.778],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [0.7825],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [0.7885],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [0.795],

“os-nosdn-ovs-noha:ericsson-virtual1:fuel”: [0.8045],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [0.8335],

“os-nosdn-ovs-noha:ericsson-virtual3:fuel”: [0.8755],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [0.8855],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [0.8895],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [0.901],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [0.956],

“os-nosdn-lxd-noha:intel-pod5:joid”: [1.131],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [1.173],

“os-odl-sfc-ha:huawei-virtual8:compass”: [1.2015],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [1.204],

“os-nosdn-lxd-ha:intel-pod5:joid”: [1.2245],

“os-odl-nofeature-ha:lf-pod2:fuel”: [1.2285],

“os-odl-sfc-noha:huawei-virtual4:compass”: [1.3055],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [1.309],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [1.313],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [1.319],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [1.3425],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [1.3475],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [1.348],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [1.432],

“os-odl_l3-nofeature-noha:huawei-virtual9:compass”: [1.442],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1.4505],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [1.497],

“os-odl-sfc-noha:huawei-virtual3:compass”: [1.504],

“os-odl-nofeature-ha:arm-pod5:fuel”: [1.519],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [1.5415],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [1.5785],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [1.604],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [1.61],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [1.633],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [1.6485],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [1.7085],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [1.71],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [1.7955],

“os-odl-nofeature-ha:arm-pod6:fuel”: [1.838],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [1.88],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [1.8975],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [1.923],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [1.944],

“os-odl-sfc-ha:huawei-virtual3:compass”: [1.968],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [1.986],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [2.0415],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [2.071],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [2.0855],

“os-odl-sfc-ha:huawei-virtual4:compass”: [2.1085],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [2.1135],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [2.234],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [2.294],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [2.304],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [2.378],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [2.397],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [2.472],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [2.603],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [2.635],

“os-odl-nofeature-noha:ericsson-virtual3:fuel”: [2.9055],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [3.1295],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [3.337],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [3.634],

“os-nosdn-nofeature-noha:ericsson-virtual1:fuel”: [3.875],

“os-odl-nofeature-noha:ericsson-virtual1:fuel”: [3.9655],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [3.9795]

}

The influence of the scenario

[image: TC002 influence of scenario]
{

“os-odl_l2-moon-ha”: [0.3415],

“os-nosdn-ovs-ha”: [0.3625],

“os-nosdn-ovs_dpdk-noha”: [0.378],

“os-nosdn-ovs_dpdk-ha”: [0.5265],

“os-nosdn-bar-noha”: [0.632],

“os-odl-bgpvpn-ha”: [0.658],

“os-ovn-nofeature-noha”: [0.668],

“os-odl_l3-nofeature-ha”: [0.8545],

“os-nosdn-ovs-noha”: [0.8575],

“os-nosdn-bar-ha”: [0.903],

“os-odl-sfc-ha”: [1.127],

“os-nosdn-lxd-noha”: [1.131],

“os-nosdn-nofeature-ha”: [1.152],

“os-odl_l2-moon-noha”: [1.1825],

“os-nosdn-lxd-ha”: [1.2245],

“os-odl_l3-nofeature-noha”: [1.337],

“os-odl-nofeature-ha”: [1.352],

“os-odl-sfc-noha”: [1.4255],

“os-nosdn-kvm-noha”: [1.5045],

“os-nosdn-openbaton-ha”: [1.5665],

“os-nosdn-nofeature-noha”: [1.729],

“os-nosdn-kvm-ha”: [1.7745],

“os-odl-nofeature-noha”: [3.106]

}

The influence of the POD

[image: TC002 influence of the POD]
{

“huawei-pod2”: [0.3925],

“lf-pod2”: [0.5315],

“lf-pod1”: [0.62],

“flex-pod2”: [0.795],

“huawei-pod12”: [0.87],

“intel-pod5”: [1.25],

“ericsson-virtual3”: [1.2655],

“ericsson-pod1”: [1.372],

“arm-pod5”: [1.518],

“huawei-virtual4”: [1.5355],

“huawei-virtual3”: [1.606],

“intel-pod18”: [1.6575],

“huawei-virtual8”: [1.709],

“huawei-virtual2”: [1.872],

“arm-pod6”: [1.895],

“huawei-virtual9”: [2.0745],

“huawei-virtual1”: [2.495],

“ericsson-virtual2”: [2.7895],

“ericsson-virtual4”: [3.768],

“ericsson-virtual1”: [3.8035]

}

Fraser release

Test results per scenario and pod (lower is better):

{

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [0.42],

“os-odl-sfc-ha:huawei-pod2:compass”: [0.557],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [0.5765],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [0.582],

“os-odl-bgpvpn-ha:lf-pod1:apex”: [0.678],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [0.7075],

“os-nosdn-calipso-noha:lf-pod1:apex”: [0.713],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [0.7155],

“os-nosdn-bar-ha:lf-pod1:apex”: [0.732],

“os-nosdn-bar-noha:lf-pod1:apex”: [0.7415],

“os-odl-nofeature-noha:lf-pod1:apex”: [0.7565],

“os-nosdn-ovs-ha:arm-pod6:fuel”: [0.8015],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [0.908],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [0.9165],

“os-nosdn-bar-ha:huawei-pod2:compass”: [0.969],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [0.9765],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [1.0245],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [1.0495],

“os-odl-sfc-noha:huawei-virtual4:compass”: [1.1645],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [1.206],

“os-odl-sfc-noha:huawei-virtual3:compass”: [1.236],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [1.241],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [1.2805],

“os-odl-nofeature-ha:lf-pod2:fuel”: [1.286],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [1.299],

“os-odl-sfc-ha:huawei-virtual4:compass”: [1.305],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [1.309],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [1.314],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [1.431],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1.457],

“os-odl-nofeature-ha:zte-pod2:daisy”: [1.517],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [1.576],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [1.592],

“os-odl-nofeature-ha:arm-pod5:fuel”: [1.714],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [1.809],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [1.81],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [1.8505],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [1.8895],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [1.909],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [1.925],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [1.964],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [1.9755],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [1.9765],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [1.9915],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [1.9925],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [2.0265],

“os-odl-nofeature-ha:arm-pod6:fuel”: [2.106],

“os-odl-sfc-ha:huawei-virtual3:compass”: [2.124],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [2.185],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [2.281],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [2.432],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [2.483],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [2.524],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [3.9175],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [4.338],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [4.641]

}

The influence of the scenario

[image: TC002 influence of scenario]
{

“os-odl-bgpvpn-ha”: [0.678],

“os-nosdn-calipso-noha”: [0.713],

“os-nosdn-ovs-ha”: [0.7245],

“os-odl_l3-nofeature-ha”: [0.7435],

“os-odl-sfc-ha”: [0.796],

“os-nosdn-kvm-ha”: [1.059],

“os-nosdn-bar-ha”: [1.083],

“os-nosdn-ovs-noha”: [1.09],

“os-odl-sfc-noha”: [1.196],

“os-nosdn-nofeature-noha”: [1.26],

“os-nosdn-nofeature-ha”: [1.291],

“os-odl_l3-nofeature-noha”: [1.308],

“os-nosdn-bar-noha”: [1.4125],

“os-nosdn-kvm-noha”: [1.4475],

“os-odl-nofeature-ha”: [1.508],

“os-odl-nofeature-noha”: [1.914],

“os-nosdn-openbaton-ha”: [1.9755]

}

The influence of the POD

[image: TC002 influence of the POD]
{

“huawei-pod2”: [0.677],

“lf-pod1”: [0.725],

“ericsson-pod1”: [0.9165],

“huawei-pod12”: [1.0465],

“lf-pod2”: [1.2325],

“zte-pod2”: [1.395],

“ericsson-virtual4”: [1.582],

“huawei-virtual4”: [1.697],

“arm-pod5”: [1.714],

“huawei-virtual3”: [1.716],

“intel-pod18”: [1.856],

“huawei-virtual2”: [1.964],

“huawei-virtual1”: [1.9765],

“arm-pod6”: [2.209],

“ericsson-virtual3”: [3.9175],

“ericsson-virtual2”: [4.004]

}

Test results for TC010 memory read latency

Overview of test case

TC010 measures the memory read latency for varying memory sizes and strides.
The test results shown below are for memory size of 16MB.

Metric: Memory read latency
Unit: ns

Euphrates release

Test results per scenario and pod (lower is better):

{

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [5.3165],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [5.908],

“os-nosdn-ovs-noha:ericsson-virtual1:fuel”: [6.412],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [6.545],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [6.592],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [6.5975],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [6.7675],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [6.7675],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [6.7945],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [6.839],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [6.9695],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [7.123],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [7.289],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [7.4315],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [7.9],

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [8.178],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [8.616],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [8.646],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [8.8615],

“os-odl-sfc-ha:huawei-pod2:compass”: [8.87],

“os-nosdn-bar-ha:huawei-pod2:compass”: [8.877],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [8.892],

“os-nosdn-ovs-noha:ericsson-virtual3:fuel”: [8.898],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [8.952],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [8.9745],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [9.0375],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [9.083],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [9.09],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [9.094],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [9.293],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [9.3525],

“os-odl-sfc-noha:huawei-virtual4:compass”: [9.477],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [9.5445],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [9.5575],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [9.6435],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [9.68],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [9.728],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [9.751],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [9.8645],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [9.969],

“os-odl-sfc-noha:huawei-virtual3:compass”: [10.029],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [10.088],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [10.2985],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [10.318],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [10.3215],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [10.617],

“os-odl-nofeature-noha:ericsson-virtual3:fuel”: [10.762],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [10.7715],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [10.866],

“os-odl-sfc-ha:huawei-virtual3:compass”: [10.871],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [11.1605],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [11.227],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [11.348],

“os-odl-sfc-ha:huawei-virtual4:compass”: [11.453],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [11.571],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [11.5925],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [11.689],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [11.8695],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [12.199],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [12.433],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [12.713],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [15.328],

“os-odl-nofeature-ha:lf-pod1:apex”: [15.4265],

“os-odl-nofeature-noha:lf-pod1:apex”: [15.428],

“os-ovn-nofeature-noha:lf-pod1:apex”: [15.545],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [15.55],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [15.6395],

“os-odl-sfc-noha:lf-pod1:apex”: [15.696],

“os-odl-sfc-ha:lf-pod1:apex”: [15.774],

“os-nosdn-bar-ha:lf-pod1:apex”: [16.6455],

“os-nosdn-bar-noha:lf-pod1:apex”: [16.861],

“os-odl-nofeature-ha:arm-pod5:fuel”: [18.071],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [18.116],

“os-odl-nofeature-ha:lf-pod2:fuel”: [18.8365],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [18.927],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [29.557],

“os-odl-sfc-ha:huawei-virtual8:compass”: [32.492],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [37.623],

“os-odl-nofeature-ha:arm-pod6:fuel”: [41.345],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [42.3795],

}

The influence of the scenario

[image: TC010 influence of scenario]
{

“os-nosdn-ovs-noha”: [7.9],

“os-nosdn-ovs_dpdk-noha”: [8.641],

“os-nosdn-ovs_dpdk-ha”: [8.6815],

“os-nosdn-openbaton-ha”: [8.882],

“os-odl_l2-moon-ha”: [8.948],

“os-odl_l3-nofeature-ha”: [8.992],

“os-nosdn-nofeature-ha”: [9.118],

“os-nosdn-nofeature-noha”: [9.174],

“os-odl_l2-moon-noha”: [9.312],

“os-odl_l3-nofeature-noha”: [9.5535],

“os-odl-nofeature-noha”: [9.673],

“os-odl-sfc-noha”: [9.8385],

“os-odl-sfc-ha”: [9.98],

“os-nosdn-kvm-noha”: [10.088],

“os-nosdn-kvm-ha”: [11.1705],

“os-nosdn-bar-ha”: [12.1395],

“os-nosdn-ovs-ha”: [15.3195],

“os-ovn-nofeature-noha”: [15.545],

“os-odl-nofeature-ha”: [16.301],

“os-nosdn-bar-noha”: [16.861]

}

The influence of the POD

[image: TC010 influence of the POD]
{

“ericsson-pod1”: [5.7785],

“flex-pod2”: [5.908],

“ericsson-virtual1”: [6.412],

“intel-pod18”: [6.5905],

“intel-pod5”: [6.6975],

“ericsson-virtual4”: [7.183],

“ericsson-virtual2”: [8.4985],

“huawei-pod2”: [8.877],

“huawei-pod12”: [9.091],

“ericsson-virtual3”: [9.719],

“huawei-virtual4”: [10.1195],

“huawei-virtual3”: [10.19],

“huawei-virtual1”: [10.3045],

“huawei-virtual9”: [10.318],

“huawei-virtual2”: [11.274],

“lf-pod1”: [15.7025],

“lf-pod2”: [15.8495],

“arm-pod5”: [18.092],

“huawei-virtual8”: [33.999],

“arm-pod6”: [41.5605]

}

Fraser release

Test results per scenario and pod (lower is better):

{

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [6.8675],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [6.991],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [7.5535],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [7.571],
“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [7.635],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [8.153],

“os-odl-nofeature-ha:zte-pod2:daisy”: [8.1935],

“os-nosdn-bar-ha:huawei-pod2:compass”: [9.1715],

“os-odl-sfc-ha:huawei-pod2:compass”: [9.1875],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [9.241],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [9.255],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [9.388],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [9.5825],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [9.5875],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [9.6345],

“os-odl-sfc-noha:huawei-virtual4:compass”: [9.6535],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [9.743],

“os-odl-sfc-noha:huawei-virtual3:compass”: [9.82],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [9.8715],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [9.982],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [10.0195],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [10.1285],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [10.1335],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [10.22],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [10.2845],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [10.4185],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [10.4555],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [10.5635],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [10.6515],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [10.9355],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [11.2015],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [12.984],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [13.306],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [13.721],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [14.133],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [14.158],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [14.375],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [14.396],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [14.9375],

“os-odl-sfc-ha:huawei-virtual3:compass”: [14.957],

“os-nosdn-calipso-noha:lf-pod1:apex”: [16.3445],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [16.478],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [16.4895],

“os-odl-nofeature-noha:lf-pod1:apex”: [16.55],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [16.5665],

“os-odl-sfc-noha:lf-pod1:apex”: [16.598],

“os-ovn-nofeature-noha:lf-pod1:apex”: [16.805],

“os-odl-nofeature-ha:lf-pod1:apex”: [16.9095],

“os-nosdn-bar-ha:lf-pod1:apex”: [17.494],

“os-nosdn-bar-noha:lf-pod1:apex”: [17.4995],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [18.094],

“os-odl-nofeature-ha:arm-pod5:fuel”: [18.744],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [19.8235],

“os-odl-nofeature-ha:lf-pod2:fuel”: [20.758],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [26.5245],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [55.667],

“os-odl-nofeature-ha:arm-pod6:fuel”: [56.175],

“os-nosdn-ovs-ha:arm-pod6:fuel”: [57.86]

}

The influence of the scenario

[image: TC010 influence of scenario]
{

“os-nosdn-openbaton-ha”: [7.5535],

“os-odl-nofeature-ha”: [8.2535],

“os-odl-sfc-ha”: [9.251],

“os-nosdn-nofeature-ha”: [9.464],

“os-odl-sfc-noha”: [9.8265],

“os-odl_l3-nofeature-ha”: [9.836],

“os-odl_l3-nofeature-noha”: [10.0565],

“os-nosdn-nofeature-noha”: [10.079],

“os-nosdn-kvm-ha”: [10.418],

“os-nosdn-ovs-noha”: [10.43],

“os-nosdn-kvm-noha”: [10.603],

“os-nosdn-bar-noha”: [11.067],

“os-nosdn-bar-ha”: [13.911],

“os-odl-nofeature-noha”: [14.046],

“os-nosdn-calipso-noha”: [16.3445],

“os-nosdn-ovs-ha”: [16.478],

“os-ovn-nofeature-noha”: [16.805]

}

The influence of the POD

[image: TC010 influence of the POD]
{

“ericsson-pod1”: [7.0645],

“intel-pod18”: [7.4465],

“zte-pod2”: [8.1865],

“huawei-pod2”: [9.236],

“huawei-pod12”: [9.615],

“ericsson-virtual2”: [9.8925],

“huawei-virtual2”: [10.22],

“ericsson-virtual4”: [10.5465],

“ericsson-virtual3”: [10.9355],

“huawei-virtual3”: [10.95],

“huawei-virtual4”: [11.557],

“lf-pod2”: [16.5595],

“lf-pod1”: [16.8395],

“arm-pod5”: [18.744],

“huawei-virtual1”: [19.8235],

“arm-pod6”: [55.804]

}

Test results for TC011 packet delay variation

Overview of test case

TC011 measures the packet delay variation sending the packets from one VM to the other.

Metric: packet delay variation (jitter)
Unit: ms

Euphrates release

Test results per scenario and pod (lower is better):

{

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [2996],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [2996],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [2996],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [2996],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [2997],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [2997],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [2997],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [2997],

“os-odl-sfc-ha:huawei-virtual4:compass”: [2997],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [2997.5],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [2998],

“os-odl-sfc-ha:huawei-virtual8:compass”: [2998],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [2999],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [2999.5],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [3000],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [3001],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [3002],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [3002],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [3002],

“os-odl-sfc-ha:huawei-virtual3:compass”: [3002],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [3003],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [3003.5],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [3004],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [3004],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [3004.5],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [3005],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [3006],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [3006.5],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [3009],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [3010],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [3010],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [3012],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [3017],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [3017],

“os-odl-sfc-noha:huawei-virtual4:compass”: [3017],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [3018],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [3020],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [3021],

“os-nosdn-bar-ha:huawei-pod2:compass”: [3022],

“os-nosdn-bar-ha:lf-pod1:apex”: [3022],

“os-nosdn-bar-noha:lf-pod1:apex”: [3022],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [3022],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [3022],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [3022],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [3022],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [3022],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [3022],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [3022],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [3022],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [3022],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [3022],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [3022],

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [3022],

“os-odl-nofeature-ha:arm-pod5:fuel”: [3022],

“os-odl-sfc-ha:huawei-pod2:compass”: [3022],

“os-odl-sfc-ha:lf-pod1:apex”: [3022],

“os-odl-sfc-noha:huawei-virtual3:compass”: [3022],

“os-odl-sfc-noha:lf-pod1:apex”: [3022],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [3022],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [3022],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [3022],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [3022],

“os-ovn-nofeature-noha:lf-pod1:apex”: [3022],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [3023],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [3023],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [3024]

}

The influence of the scenario

[image: TC011 influence of scenario]
{

“os-nosdn-ovs_dpdk-noha”: [2996],

“os-odl_l3-nofeature-noha”: [2997],

“os-nosdn-kvm-noha”: [2999],

“os-nosdn-ovs_dpdk-ha”: [3002],

“os-nosdn-kvm-ha”: [3014.5],

“os-odl-sfc-noha”: [3018],

“os-nosdn-nofeature-noha”: [3020],

“os-nosdn-openbaton-ha”: [3020],

“os-nosdn-bar-ha”: [3022],

“os-nosdn-bar-noha”: [3022],

“os-nosdn-nofeature-ha”: [3022],

“os-odl-nofeature-ha”: [3022],

“os-odl-sfc-ha”: [3022],

“os-odl_l2-moon-ha”: [3022],

“os-odl_l2-moon-noha”: [3022],

“os-odl_l3-nofeature-ha”: [3022],

“os-ovn-nofeature-noha”: [3022]

}

The influence of the POD

[image: TC011 influence of the POD]
{

“huawei-virtual2”: [2997],

“flex-pod2”: [2997.5],

“huawei-virtual3”: [2998],

“huawei-virtual9”: [3000],

“huawei-virtual8”: [3001],

“huawei-virtual4”: [3002],

“ericsson-virtual3”: [3006],

“huawei-virtual1”: [3007],

“ericsson-virtual2”: [3009],

“intel-pod18”: [3010],

“ericsson-virtual4”: [3017],

“lf-pod2”: [3021],

“arm-pod5”: [3022],

“arm-pod6”: [3022],

“ericsson-pod1”: [3022],

“huawei-pod12”: [3022],

“huawei-pod2”: [3022],

“intel-pod5”: [3022],

“lf-pod1”: [3022]

}

Fraser release

Test results per scenario and pod (lower is better):

{

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [1],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [1],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [1],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [1],

“os-ovn-nofeature-noha:lf-pod1:apex”: [1511.5],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [2996],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [2997],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [2997],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [2997],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [2997],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [2997],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [2997],

“os-odl-sfc-ha:huawei-virtual3:compass”: [2997],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [2997],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [3000],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [3003],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [3011],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [3015.5],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [3019],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [3021],

“os-odl-sfc-ha:huawei-virtual4:compass”: [3021],

“os-nosdn-bar-ha:huawei-pod2:compass”: [3022],

“os-nosdn-bar-ha:lf-pod1:apex”: [3022],

“os-nosdn-bar-noha:lf-pod1:apex”: [3022],

“os-nosdn-calipso-noha:lf-pod1:apex”: [3022],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [3022],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [3022],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [3022],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [3022],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [3022],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [3022],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [3022],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [3022],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [3022],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [3022],

“os-odl-sfc-ha:huawei-pod2:compass”: [3022],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [3022],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [3022],

“os-odl-sfc-noha:huawei-virtual4:compass”: [3022.5],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [3023],

“os-odl-sfc-noha:huawei-virtual3:compass”: [3023],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [3025]

}

The influence of the scenario

[image: TC011 influence of scenario]
{

“os-ovn-nofeature-noha”: [1511.5],

“os-nosdn-kvm-noha”: [2997],

“os-odl-sfc-ha”: [3021],

“os-nosdn-bar-ha”: [3022],

“os-nosdn-bar-noha”: [3022],

“os-nosdn-calipso-noha”: [3022],

“os-nosdn-kvm-ha”: [3022],

“os-nosdn-nofeature-ha”: [3022],

“os-nosdn-nofeature-noha”: [3022],

“os-nosdn-openbaton-ha”: [3022],

“os-odl_l3-nofeature-ha”: [3022],

“os-odl_l3-nofeature-noha”: [3022],

“os-odl-sfc-noha”: [3023]

}

The influence of the POD

[image: TC011 influence of the POD]
{

“arm-pod6”: [1],

“ericsson-pod1”: [1],

“ericsson-virtual2”: [1],

“ericsson-virtual3”: [1],

“lf-pod2”: [1],

“huawei-virtual1”: [2997],

“huawei-virtual3”: [2999],

“huawei-virtual4”: [3002],

“huawei-pod12”: [3022],

“huawei-pod2”: [3022],

“intel-pod18”: [3022],

“lf-pod1”: [3022],

“zte-pod2”: [3022],

“huawei-virtual2”: [3025]

}

Test results for TC012 memory read/write bandwidth

Overview of test case

TC012 measures the rate at which data can be read from and written to the memory (this includes all levels of memory).
In this test case, the bandwidth to read data from memory and then write data to the same memory location are measured.

Metric: memory bandwidth
Unit: MBps

Euphrates release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-ha:lf-pod1:apex”: [23126.325],

“os-odl-nofeature-noha:lf-pod1:apex”: [23123.975],

“os-odl-nofeature-ha:lf-pod1:apex”: [23068.965],

“os-odl-nofeature-ha:lf-pod2:fuel”: [22972.46],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [22912.015],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [22911.35],

“os-ovn-nofeature-noha:lf-pod1:apex”: [22900.93],

“os-nosdn-bar-ha:lf-pod1:apex”: [22767.56],

“os-nosdn-bar-noha:lf-pod1:apex”: [22721.83],

“os-odl-sfc-noha:lf-pod1:apex”: [22511.565],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [22071.235],

“os-odl-sfc-ha:lf-pod1:apex”: [21646.415],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [20229.99],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [17491.18],

“os-nosdn-ovs-noha:ericsson-virtual1:fuel”: [17474.965],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [17141.375],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [17134.99],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [17124.27],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [16599.325],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [16309.13],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [16137.48],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [15960.76],

“os-nosdn-ovs-noha:ericsson-virtual3:fuel”: [15685.505],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [15536.65],

“os-odl-nofeature-noha:ericsson-virtual3:fuel”: [15431.795],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [15129.27],

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [15125.51],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [15030.65],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [15019.89],

“os-odl-sfc-ha:huawei-pod2:compass”: [15005.11],

“os-nosdn-bar-ha:huawei-pod2:compass”: [14975.645],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [14968.97],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [14968.97],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [14741.425],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [14714.28],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [14674.38],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [14664.12],

“os-odl-sfc-noha:huawei-virtual4:compass”: [14587.62],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [14539.94],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [14534.54],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [14511.925],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [14496.875],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [14378.87],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [14366.69],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [14356.695],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [14341.605],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [14327.78],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [14313.81],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [14284.365],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [14157.99],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [14144.86],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [14138.9],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [14117.7],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [14097.255],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [14085.675],

“os-odl-sfc-noha:huawei-virtual3:compass”: [14071.605],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [14059.51],

“os-odl-sfc-ha:huawei-virtual4:compass”: [14057.155],

“os-odl-sfc-ha:huawei-virtual3:compass”: [14051.945],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [14020.74],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [14017.915],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [13954.27],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [13915.87],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [13874.59],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [13812.215],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [13777.59],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [13765.36],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [13559.905],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [13477.52],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [13255.17],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [13189.64],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [12718.545],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [12559.445],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [12409.66],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [8832.515],

“os-odl-sfc-ha:huawei-virtual8:compass”: [8823.955],

“os-odl-nofeature-ha:arm-pod5:fuel”: [4398.08],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [4375.75],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [4260.77],

“os-odl-nofeature-ha:arm-pod6:fuel”: [4259.62]

}

The influence of the scenario

[image: TC012 influence of scenario]
{

“os-ovn-nofeature-noha”: [22900.93],

“os-nosdn-bar-noha”: [22721.83],

“os-nosdn-ovs-ha”: [22063.67],

“os-odl-nofeature-ha”: [17146.05],

“os-odl-nofeature-noha”: [16017.41],

“os-nosdn-ovs-noha”: [16005.74],

“os-nosdn-nofeature-noha”: [15290.94],

“os-nosdn-nofeature-ha”: [15038.74],

“os-nosdn-bar-ha”: [14972.975],

“os-odl_l2-moon-ha”: [14956.955],

“os-odl_l3-nofeature-ha”: [14839.21],

“os-odl-sfc-ha”: [14823.48],

“os-nosdn-ovs_dpdk-ha”: [14822.17],

“os-nosdn-ovs_dpdk-noha”: [14725.9],

“os-odl_l2-moon-noha”: [14665.4],

“os-odl_l3-nofeature-noha”: [14483.09],

“os-odl-sfc-noha”: [14373.21],

“os-nosdn-openbaton-ha”: [14135.325],

“os-nosdn-kvm-noha”: [14020.26],

“os-nosdn-kvm-ha”: [13996.02]

}

The influence of the POD

[image: TC012 influence of the POD]
{

“lf-pod1”: [22912.39],

“lf-pod2”: [22637.67],

“flex-pod2”: [20229.99],

“ericsson-virtual1”: [17474.965],

“ericsson-pod1”: [17127.38],

“ericsson-virtual4”: [16219.97],

“ericsson-virtual2”: [15652.28],

“ericsson-virtual3”: [15551.26],

“huawei-pod2”: [15017.2],

“huawei-virtual4”: [14266.34],

“huawei-virtual1”: [14233.035],

“huawei-virtual3”: [14227.63],

“huawei-pod12”: [14147.245],

“intel-pod18”: [14058.33],

“huawei-virtual2”: [13862.85],

“intel-pod5”: [13280.32],

“huawei-virtual9”: [12559.445],

“huawei-virtual8”: [8998.02],

“arm-pod5”: [4388.875],

“arm-pod6”: [4260.2]

}

Fraser release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [21421.795],

“os-odl-sfc-noha:lf-pod1:apex”: [21075],

“os-odl-sfc-ha:lf-pod1:apex”: [21017.44],

“os-nosdn-bar-noha:lf-pod1:apex”: [20991.46],

“os-nosdn-bar-ha:lf-pod1:apex”: [20812.405],

“os-ovn-nofeature-noha:lf-pod1:apex”: [20694.035],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [20672.765],

“os-odl-nofeature-ha:lf-pod2:fuel”: [20269.65],

“os-nosdn-calipso-noha:lf-pod1:apex”: [20186.32],

“os-odl-nofeature-noha:lf-pod1:apex”: [19959.915],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [19719.38],

“os-odl-nofeature-ha:lf-pod1:apex”: [19654.505],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [19391.145],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [19378.64],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [19103.43],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [18688.695],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [18557.95],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [17088.61],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [17040.78],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [16057.235],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [15622.355],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [15422.235],

“os-odl-sfc-ha:huawei-pod2:compass”: [15403.09],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [15141.58],

“os-nosdn-bar-ha:huawei-pod2:compass”: [14922.37],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [14864.195],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [14856.295],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [14796.035],

“os-odl-sfc-noha:huawei-virtual4:compass”: [14484.375],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [14441.955],

“os-odl-sfc-noha:huawei-virtual3:compass”: [14373],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [14330.44],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [14320.305],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [14253.715],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [14203.655],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [14179.93],

“os-odl-nofeature-ha:zte-pod2:daisy”: [14177.135],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [14150.825],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [14100.87],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [14033.36],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [13963.73],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [13874.775],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [13805.65],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [13754.63],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [13702.92],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [13638.115],

“os-odl-sfc-ha:huawei-virtual3:compass”: [13637.83],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [13635.66],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [13635.58],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [13544.95],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [13514.27],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [13496.45],

“os-odl-sfc-ha:huawei-virtual4:compass”: [13475.38],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [12733.19],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [12682.805],

“os-odl-nofeature-ha:arm-pod5:fuel”: [4326.11],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [3824.13],

“os-odl-nofeature-ha:arm-pod6:fuel”: [3797.795],

“os-nosdn-ovs-ha:arm-pod6:fuel”: [3749.91]

}

The influence of the scenario

[image: TC012 influence of scenario]
{

“os-ovn-nofeature-noha”: [20694.035],

“os-nosdn-calipso-noha”: [20186.32],

“os-nosdn-openbaton-ha”: [18557.95],

“os-nosdn-ovs-ha”: [17048.17],

“os-odl-nofeature-noha”: [16191.125],

“os-nosdn-ovs-noha”: [15790.32],

“os-nosdn-bar-ha”: [14833.97],

“os-odl-sfc-ha”: [14828.72],

“os-odl_l3-nofeature-ha”: [14801.25],

“os-nosdn-kvm-ha”: [14700.1],

“os-nosdn-nofeature-ha”: [14610.48],

“os-nosdn-nofeature-noha”: [14555.975],

“os-odl-sfc-noha”: [14508.14],

“os-nosdn-bar-noha”: [14395.22],

“os-odl-nofeature-ha”: [14231.245],

“os-odl_l3-nofeature-noha”: [14161.58],

“os-nosdn-kvm-noha”: [13845.685]

}

The influence of the POD

[image: TC012 influence of the POD]
{

“lf-pod1”: [20552.9],

“lf-pod2”: [20058.925],

“ericsson-pod1”: [18930.78],

“intel-pod18”: [18757.545],

“ericsson-virtual4”: [15389.465],

“ericsson-virtual2”: [15343.79],

“huawei-pod2”: [14870.78],

“zte-pod2”: [14157.99],

“huawei-pod12”: [14126.99],

“huawei-virtual3”: [13929.67],

“huawei-virtual4”: [13847.155],

“huawei-virtual2”: [13702.92],

“huawei-virtual1”: [13496.45],

“ericsson-virtual3”: [12733.19],

“arm-pod5”: [4326.11],

“arm-pod6”: [3809.885]

}

Test results for TC014 cpu processing speed

Overview of test case

TC014 measures score of single cpu running using UnixBench.

Metric: score of single CPU running
Unit: N/A

Euphrates release

Test results per scenario and pod (higher is better):

{

“os-odl-sfc-noha:lf-pod1:apex”: [3735.2],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [3725.5],

“os-odl-nofeature-ha:lf-pod2:fuel”: [3711],

“os-odl-nofeature-ha:lf-pod1:apex”: [3708.4],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [3705.7],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [3704],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [3703.2],

“os-odl-nofeature-noha:lf-pod1:apex”: [3702.8],

“os-odl-sfc-ha:lf-pod1:apex”: [3698.7],

“os-ovn-nofeature-noha:lf-pod1:apex”: [3654.8],

“os-nosdn-bar-ha:lf-pod1:apex”: [3635.55],

“os-nosdn-bar-noha:lf-pod1:apex”: [3633.2],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [3450.3],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [3406.4],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [3360.4],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [3340.65],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [3208.6],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [3134.8],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [3056.2],

“os-nosdn-ovs-noha:ericsson-virtual1:fuel”: [2988.9],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [2773.7],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [2645.85],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [2625.3],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [2601.3],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [2590.4],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [2570.2],

“os-nosdn-ovs-noha:ericsson-virtual3:fuel”: [2558.8],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [2556.5],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [2554.6],

“os-odl-nofeature-noha:ericsson-virtual3:fuel”: [2536.75],

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [2533.55],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [2531.85],

“os-odl-sfc-ha:huawei-pod2:compass”: [2531.7],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [2531.2],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [2531],

“os-nosdn-bar-ha:huawei-pod2:compass”: [2529.6],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [2520.5],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [2481.15],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [2474],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [2472.6],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [2471],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [2470.6],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [2464.15],

“os-odl-sfc-noha:huawei-virtual4:compass”: [2455.9],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [2455.3],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [2446.85],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [2444.75],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [2430.9],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [2421.3],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [2415.7],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [2399.4],

“os-odl-sfc-ha:huawei-virtual3:compass”: [2391.85],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [2391.45],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [2380.7],

“os-odl-sfc-ha:huawei-virtual4:compass”: [2379.6],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [2371.9],

“os-odl-sfc-noha:huawei-virtual3:compass”: [2364.6],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [2363.4],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [2362],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [2358.5],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [2358.45],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [2336],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [2326.6],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [2324.95],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [2320.2],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [2318.5],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [2312.8],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [2311.7],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [2301.15],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [2297.7],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [2232.8],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [2232.1],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [2230],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [2154],

“os-odl-sfc-ha:huawei-virtual8:compass”: [2150.1],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [2004.3],

“os-odl-nofeature-ha:arm-pod5:fuel”: [1754.5],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [1754.15],

“os-odl-nofeature-ha:arm-pod6:fuel”: [716.15],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [716.05]

}

The influence of the scenario

[image: TC014 influence of scenario]
{

“os-nosdn-ovs-ha”: [3725.5],

“os-ovn-nofeature-noha”: [3654.8],

“os-nosdn-bar-noha”: [3633.2],

“os-odl-nofeature-ha”: [3407.8],

“os-nosdn-ovs-noha”: [2583.2],

“os-odl-nofeature-noha”: [2578.9],

“os-nosdn-nofeature-noha”: [2553.2],

“os-nosdn-nofeature-ha”: [2532.8],

“os-odl_l2-moon-ha”: [2530.5],

“os-nosdn-bar-ha”: [2527],

“os-odl_l3-nofeature-ha”: [2501.5],

“os-nosdn-ovs_dpdk-noha”: [2473.65],

“os-odl-sfc-ha”: [2472.9],

“os-odl_l2-moon-noha”: [2470.8],

“os-nosdn-ovs_dpdk-ha”: [2461.9],

“os-odl_l3-nofeature-noha”: [2442.8],

“os-nosdn-kvm-noha”: [2392.9],

“os-odl-sfc-noha”: [2370.5],

“os-nosdn-kvm-ha”: [2358.5],

“os-nosdn-openbaton-ha”: [2231.8]

}

The influence of the POD

[image: TC014 influence of the POD]
{

“lf-pod2”: [3723.95],

“lf-pod1”: [3669],

“intel-pod5”: [3388.6],

“intel-pod18”: [3298.4],

“flex-pod2”: [3208.6],

“ericsson-virtual1”: [2988.9],

“ericsson-pod1”: [2669.1],

“ericsson-virtual4”: [2598.5],

“ericsson-virtual3”: [2553.15],

“huawei-pod2”: [2531.2],

“ericsson-virtual2”: [2526.9],

“huawei-virtual4”: [2407.4],

“huawei-virtual3”: [2374.6],

“huawei-virtual2”: [2326.4],

“huawei-virtual9”: [2324.95],

“huawei-virtual1”: [2302.6],

“huawei-pod12”: [2232.2],

“huawei-virtual8”: [2085.3],

“arm-pod5”: [1754.4],

“arm-pod6”: [716.15]

}

Fraser release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [3747.3],

“os-nosdn-calipso-noha:lf-pod1:apex”: [3727.2],

“os-odl-nofeature-ha:lf-pod1:apex”: [3726.5],

“os-ovn-nofeature-noha:lf-pod1:apex”: [3723.8],

“os-odl-nofeature-noha:lf-pod1:apex”: [3718.9],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [3717.75],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [3706.5],

“os-odl-nofeature-ha:lf-pod2:fuel”: [3704.9],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [3687.7],

“os-nosdn-bar-noha:lf-pod1:apex”: [3635.4],

“os-nosdn-bar-ha:lf-pod1:apex”: [3632.55],

“os-odl-sfc-noha:lf-pod1:apex”: [3569],

“os-nosdn-nofeature-noha:intel-pod18:joid”: [3432.1],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [3133.85],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [3079.8],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [3074.75],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [2976.2],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [2910.95],

“os-odl-nofeature-ha:zte-pod2:daisy”: [2801.1],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [2603],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [2559.7],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [2539.1],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [2530.5],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [2529.4],

“os-odl-sfc-ha:huawei-pod2:compass”: [2528.9],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [2527.8],

“os-nosdn-bar-ha:huawei-pod2:compass”: [2527.4],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [2517.8],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [2472.4],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [2469.1],

“os-odl-sfc-noha:huawei-virtual3:compass”: [2452.05],

“os-odl-sfc-noha:huawei-virtual4:compass”: [2438.7],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [2418.4],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [2404.35],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [2391],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [2376.75],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [2376.2],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [2359.45],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [2353.3],

“os-odl-sfc-ha:huawei-virtual3:compass”: [2351.9],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [2339.4],

“os-odl-sfc-ha:huawei-virtual4:compass”: [2335.6],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [2328],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [2324.5],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [2317.3],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [2313.95],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [2308.1],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [2299.3],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [2250.4],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [2229.7],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [2228.8],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [2171.3],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [2104.8],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1961.35],

“os-nosdn-ovs-ha:arm-pod5:fuel”: [1764.2],

“os-odl-nofeature-ha:arm-pod5:fuel”: [1730.95],

“os-nosdn-ovs-ha:arm-pod6:fuel”: [715.55],

“os-odl-nofeature-ha:arm-pod6:fuel”: [715.4],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [715.25]

}

The influence of the scenario

[image: TC014 influence of scenario]
{

“os-nosdn-calipso-noha”: [3727.2],

“os-ovn-nofeature-noha”: [3723.8],

“os-odl-nofeature-noha”: [3128.05],

“os-nosdn-openbaton-ha”: [2976.2],

“os-nosdn-ovs-ha”: [2814.5],

“os-odl-nofeature-ha”: [2801.4],

“os-nosdn-nofeature-ha”: [2649.7],

“os-nosdn-ovs-noha”: [2587.3],

“os-odl_l3-nofeature-ha”: [2528.45],

“os-odl-sfc-ha”: [2527.6],

“os-nosdn-bar-ha”: [2526.55],

“os-nosdn-kvm-ha”: [2516.95],

“os-odl-sfc-noha”: [2453.65],

“os-nosdn-bar-noha”: [2447.7],

“os-nosdn-nofeature-noha”: [2443.85],

“os-odl_l3-nofeature-noha”: [2394.3],

“os-nosdn-kvm-noha”: [2379.7]

}

The influence of the POD

[image: TC014 influence of the POD]
{

“lf-pod2”: [3737.6],

“lf-pod1”: [3702.7],

“ericsson-pod1”: [3131.6],

“intel-pod18”: [3098.1],

“zte-pod2”: [2831.4],

“ericsson-virtual2”: [2559.7],

“huawei-pod2”: [2528.9],

“ericsson-virtual4”: [2527.8],

“huawei-virtual3”: [2379.1],

“huawei-virtual4”: [2362.1],

“huawei-virtual2”: [2299.3],

“huawei-pod12”: [2229],

“huawei-virtual1”: [2171.3],

“ericsson-virtual3”: [2104.8],

“arm-pod5”: [1764.2],

“arm-pod6”: [715.4]

}

Test results for TC069 memory write bandwidth

Overview of test case

TC069 measures the maximum possible cache and memory performance while reading and writing certain
blocks of data (starting from 1Kb and further in power of 2) continuously through ALU and FPU
respectively. Measure different aspects of memory performance via synthetic simulations.
Each simulation consists of four performances (Copy, Scale, Add, Triad).
The test results shown below are for writing 32MB integer block size.

Metric: memory write bandwidth
Unit: MBps

Euphrates release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-noha:intel-pod18:joid”: [20113.395],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [19183.58],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [17851.35],

“os-nosdn-nofeature-noha:intel-pod5:joid”: [16312.37],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [15633.245],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [13332.065],

“os-odl-nofeature-ha:arm-pod6:fuel”: [13327.02],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [9462.74],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [9384.585],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [9235.98],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [9213.6],

“os-nosdn-openbaton-ha:huawei-pod12:joid”: [9152.18],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [9079.45],

“os-odl_l2-moon-ha:huawei-pod2:compass”: [9071.13],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [9068.06],

“os-odl-sfc-ha:huawei-pod2:compass”: [9031.24],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [9019.53],

“os-nosdn-bar-ha:huawei-pod2:compass”: [8977.3],

“os-nosdn-ovs_dpdk-ha:huawei-pod2:compass”: [8960.635],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [8825.805],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [8282.75],

“os-odl_l2-moon-noha:huawei-virtual4:compass”: [8116.33],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [8083.97],

“os-odl_l2-moon-noha:huawei-virtual3:compass”: [8083.52],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [7799.145],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [7776.12],

“os-nosdn-ovs_dpdk-noha:huawei-virtual3:compass”: [7680.37],

“os-nosdn-ovs-noha:ericsson-virtual1:fuel”: [7615.97],

“os-nosdn-nofeature-noha:ericsson-virtual4:fuel”: [7612.62],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [7518.62],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [7489.67],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [7478.57],

“os-nosdn-ovs_dpdk-ha:huawei-virtual4:compass”: [7465.82],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [7443.16],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [7442.855],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [7440.65],

“os-odl-sfc-noha:huawei-virtual4:compass”: [7401.16],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [7389.505],

“os-odl-nofeature-ha:arm-pod5:fuel”: [7385.76],

“os-nosdn-nofeature-noha:huawei-virtual1:compass”: [7382.345],

“os-odl_l2-moon-ha:huawei-virtual3:compass”: [7286.385],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [7272.06],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [7261.73],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [7253.64],

“os-odl-sfc-noha:huawei-virtual3:compass”: [7247.89],

“os-odl_l3-nofeature-ha:huawei-virtual2:compass”: [7214.01],

“os-nosdn-ovs_dpdk-ha:huawei-virtual3:compass”: [7207.39],

“os-nosdn-ovs_dpdk-noha:huawei-virtual4:compass”: [7205.565],

“os-nosdn-ovs-noha:ericsson-virtual3:fuel”: [7201.005],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [7132.835],

“os-odl-nofeature-noha:ericsson-virtual3:fuel”: [7117.05],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [7064.18],

“os-odl_l2-moon-ha:huawei-virtual4:compass”: [6997.295],

“os-odl-nofeature-ha:lf-pod1:apex”: [6992.21],

“os-odl-sfc-ha:huawei-virtual4:compass”: [6975.63],

“os-odl-nofeature-noha:lf-pod1:apex”: [6972.63],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [6955],

“os-ovn-nofeature-noha:lf-pod1:apex”: [6954.5],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [6953.35],

“os-odl-sfc-noha:lf-pod1:apex”: [6951.89],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [6932.29],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [6929.54],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [6921.6],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [6913.355],

“os-odl-nofeature-ha:lf-pod2:fuel”: [6848.58],

“os-odl-sfc-ha:lf-pod1:apex”: [6818.74],

“os-nosdn-bar-noha:lf-pod1:apex”: [6812.16],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [6808.18],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [6807.565],

“os-nosdn-bar-ha:lf-pod1:apex”: [6774.76],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [6759.4],

“os-nosdn-nofeature-noha:huawei-virtual8:compass”: [6756.9],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [6543.46],

“os-nosdn-kvm-ha:huawei-virtual3:compass”: [6504.34],

“os-odl-sfc-ha:huawei-virtual3:compass”: [6481.005],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [6461.5],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [6152.375],

“os-odl-sfc-ha:huawei-virtual8:compass”: [5941.7],

“os-nosdn-kvm-noha:huawei-virtual8:compass”: [4564.515]

}

The influence of the scenario

[image: TC069 influence of scenario]
{

“os-nosdn-openbaton-ha”: [9187.16],

“os-odl_l2-moon-ha”: [9010.57],

“os-nosdn-nofeature-ha”: [8886.75],

“os-odl_l3-nofeature-ha”: [8779.67],

“os-odl_l2-moon-noha”: [8114.995],

“os-nosdn-ovs_dpdk-ha”: [7864.07],

“os-odl_l3-nofeature-noha”: [7632.11],

“os-odl-sfc-ha”: [7624.67],

“os-nosdn-nofeature-noha”: [7470.66],

“os-odl-nofeature-ha”: [7372.23],

“os-nosdn-ovs_dpdk-noha”: [7311.54],

“os-odl-sfc-noha”: [7300.56],

“os-nosdn-ovs-noha”: [7280.005],

“os-odl-nofeature-noha”: [7162.67],

“os-nosdn-kvm-ha”: [7130.775],

“os-nosdn-kvm-noha”: [7041.13],

“os-ovn-nofeature-noha”: [6954.5],

“os-nosdn-ovs-ha”: [6913.355],

“os-nosdn-bar-ha”: [6829.17],

“os-nosdn-bar-noha”: [6812.16]

}

The influence of the POD

[image: TC069 influence of the POD]
{

“intel-pod18”: [18871.79],

“intel-pod5”: [16055.79],

“arm-pod6”: [13327.02],

“flex-pod2”: [9384.585],

“ericsson-pod1”: [9331.535],

“huawei-pod12”: [9164.88],

“huawei-pod2”: [9026.52],

“huawei-virtual9”: [8825.805],

“ericsson-virtual1”: [7615.97],

“ericsson-virtual4”: [7539.23],

“arm-pod5”: [7403.38],

“huawei-virtual3”: [7247.89],

“huawei-virtual2”: [7205.35],

“huawei-virtual1”: [7196.405],

“ericsson-virtual3”: [7173.72],

“huawei-virtual4”: [7131.47],

“ericsson-virtual2”: [7129.08],

“lf-pod1”: [6928.18],

“lf-pod2”: [6875.88],

“huawei-virtual8”: [5729.705]

}

Fraser release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-noha:intel-pod18:joid”: [18382.49],

“os-nosdn-openbaton-ha:intel-pod18:joid”: [16774.52],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [16680.305],

“os-nosdn-ovs-ha:arm-pod6:fuel”: [11925.22],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [11895.71],

“os-odl-nofeature-ha:arm-pod6:fuel”: [11880.7],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [9471.095],

“os-odl-nofeature-ha:zte-pod2:daisy”: [9375.33],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [9372.95],

“os-odl-nofeature-ha:ericsson-pod1:fuel”: [9174.36],

“os-nosdn-nofeature-noha:huawei-pod12:joid”: [9051.57],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [8894.74],

“os-odl_l3-nofeature-ha:huawei-pod2:compass”: [8857.23],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [8855.8],

“os-nosdn-bar-ha:huawei-pod2:compass”: [8840.94],

“os-odl-sfc-ha:huawei-pod2:compass”: [8826.23],

“os-nosdn-nofeature-noha:huawei-virtual4:compass”: [8039.48],

“os-nosdn-nofeature-noha:huawei-virtual2:compass”: [7670.21],

“os-nosdn-ovs-ha:arm-pod5:fuel”: [7590.9],

“os-odl-sfc-noha:huawei-virtual4:compass”: [7579.625],

“os-nosdn-bar-noha:huawei-virtual3:compass”: [7511.775],

“os-odl-nofeature-ha:arm-pod5:fuel”: [7475.16],

“os-nosdn-bar-noha:huawei-virtual4:compass”: [7435.08],

“os-nosdn-nofeature-noha:ericsson-virtual2:fuel”: [7426.79],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [7362.8],

“os-nosdn-kvm-noha:huawei-virtual4:compass”: [7263.45],

“os-nosdn-nofeature-noha:huawei-virtual3:compass”: [7262.72],

“os-odl_l3-nofeature-noha:huawei-virtual3:compass”: [7241.07],

“os-odl-nofeature-noha:ericsson-virtual2:fuel”: [7219.21],

“os-nosdn-kvm-noha:huawei-virtual3:compass”: [7174.33],

“os-odl-sfc-noha:huawei-virtual3:compass”: [7170.795],

“os-odl-nofeature-noha:lf-pod1:apex”: [7158.335],

“os-nosdn-kvm-ha:huawei-pod2:compass”: [7122.45],

“os-odl-sfc-ha:huawei-virtual4:compass”: [7104.9],

“os-nosdn-ovs-noha:ericsson-virtual2:fuel”: [7044.37],

“os-nosdn-bar-ha:huawei-virtual3:compass”: [7011.075],

“os-nosdn-ovs-ha:ericsson-pod1:fuel”: [6950.28],

“os-nosdn-ovs-noha:ericsson-virtual4:fuel”: [6918.31],

“os-nosdn-bar-ha:huawei-virtual4:compass”: [6903.11],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [6880.98],

“os-odl-sfc-ha:lf-pod1:apex”: [6863.39],

“os-odl_l3-nofeature-ha:huawei-virtual3:compass”: [6851.54],

“os-nosdn-nofeature-noha:lf-pod1:apex”: [6834.75],

“os-nosdn-calipso-noha:lf-pod1:apex”: [6833.92],

“os-nosdn-ovs-ha:lf-pod2:fuel”: [6814.68],

“os-ovn-nofeature-noha:lf-pod1:apex”: [6809.44],

“os-odl_l3-nofeature-ha:huawei-virtual4:compass”: [6784.48],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [6737.64],

“os-nosdn-bar-noha:lf-pod1:apex”: [6708.61],

“os-nosdn-bar-ha:lf-pod1:apex”: [6697.2],

“os-odl-nofeature-ha:lf-pod1:apex”: [6626.51],

“os-odl-sfc-noha:lf-pod1:apex”: [6609.57],

“os-odl-sfc-ha:huawei-virtual3:compass”: [6606.87],

“os-odl_l3-nofeature-noha:huawei-virtual4:compass”: [6547.39],

“os-odl-nofeature-ha:lf-pod2:fuel”: [6465.48],

“os-odl-nofeature-noha:ericsson-virtual4:fuel”: [6413],

“os-nosdn-kvm-ha:huawei-virtual4:compass”: [6409.075],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [6128.79],

“os-nosdn-nofeature-noha:ericsson-virtual3:fuel”: [5835.59],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [5617.12]

}

The influence of the scenario

[image: TC069 influence of scenario]
{

“os-nosdn-openbaton-ha”: [16774.52],

“os-odl-nofeature-ha”: [9363.69],

“os-nosdn-nofeature-ha”: [8878.01],

“os-odl_l3-nofeature-ha”: [8748.4],

“os-odl-sfc-ha”: [8708.045],

“os-nosdn-nofeature-noha”: [7426.79],

“os-nosdn-kvm-noha”: [7230.79],

“os-odl-sfc-noha”: [7224.11],

“os-odl-nofeature-noha”: [7187.84],

“os-nosdn-ovs-noha”: [7044.37],

“os-nosdn-bar-ha”: [6947.87],

“os-odl_l3-nofeature-noha”: [6895.96],

“os-nosdn-kvm-ha”: [6890.92],

“os-nosdn-calipso-noha”: [6833.92],

“os-nosdn-ovs-ha”: [6833.495],

“os-nosdn-bar-noha”: [6811.66],

“os-ovn-nofeature-noha”: [6809.44]

}

The influence of the POD

[image: TC069 influence of the POD]
{

“intel-pod18”: [16939.24],

“arm-pod6”: [11895.71],

“zte-pod2”: [9375.33],

“ericsson-pod1”: [9140.42],

“huawei-pod12”: [8993.37],

“huawei-pod2”: [8794.01],

“huawei-virtual2”: [7670.21],

“arm-pod5”: [7479.32],

“ericsson-virtual2”: [7219.21],

“huawei-virtual4”: [7059.045],

“huawei-virtual3”: [7023.57],

“lf-pod2”: [6834.7],

“lf-pod1”: [6775.27],

“ericsson-virtual4”: [6522.86],

“ericsson-virtual3”: [5835.59],

“huawei-virtual1”: [5617.12]

}

Test results for TC082 context switches under load

Overview of test case

TC082 measures various software performance events using perf.
The test results shown below are for context-switches.

Metric: context switches
Unit: N/A

Euphrates release

Test results per scenario and pod (lower is better):

{

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [316],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [340],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [357.5],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [384],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [394.5],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [435],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [476],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [518],

“os-odl-nofeature-ha:arm-pod5:fuel”: [863],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [871],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [1002],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [1174],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [1239],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [1430],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [1489],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [1883.5]

}

The influence of the scenario

[image: TC082 influence of scenario]
{

“os-nosdn-nofeature-ha”: [505],

“os-odl-nofeature-ha”: [863]

}

The influence of the POD

[image: TC082 influence of the POD]
{

“huawei-pod12”: [316],

“intel-pod18”: [340],

“intel-pod5”: [357.5],

“ericsson-pod1”: [384],

“lf-pod2”: [394.5],

“lf-pod1”: [435],

“flex-pod2”: [476],

“huawei-pod2”: [518],

“arm-pod5”: [869.5],

“huawei-virtual9”: [1002],

“huawei-virtual4”: [1174],

“huawei-virtual3”: [1239],

“huawei-virtual2”: [1430],

“huawei-virtual1”: [1489],

“arm-pod6”: [1883.5]

}

Fraser release

Test results per scenario and pod (lower is better):

{

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [306.5],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [337.5],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [343.5],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [399],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [454],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [544.5],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [1138],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1305],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [1433],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [1470],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [1738.5]

}

The influence of the POD

[image: TC082 influence of the POD]
{

“zte-pod2”: [306.5],

“lf-pod2”: [337.5],

“intel-pod18”: [343.5],

“huawei-pod12”: [399],

“lf-pod1”: [454],

“huawei-pod2”: [544.5],

“huawei-virtual4”: [1138],

“ericsson-pod1”: [1305],

“huawei-virtual3”: [1433],

“huawei-virtual1”: [1470],

“arm-pod6”: [1738.5]

}

Test results for TC083 network throughput between VMs

Overview of test case

TC083 measures network latency and throughput between VMs using netperf.
The test results shown below are for UDP throughout.

Metric: UDP stream throughput
Unit: 10^6bits/s

Euphrates release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-ha:lf-pod1:apex”: [2204.42],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [1835.55],

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [1676.705],

“os-nosdn-nofeature-ha:intel-pod5:joid”: [1612.555],

“os-nosdn-nofeature-ha:flex-pod2:apex”: [1370.23],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [1300.12],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [1070.455],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [1004.32],

“os-nosdn-nofeature-ha:huawei-virtual9:compass”: [753.46],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [735.07],

“os-odl-nofeature-ha:arm-pod5:fuel”: [531.63],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [493.985],

“os-nosdn-nofeature-ha:arm-pod5:fuel”: [448.82],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [193.43],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [189.99],

“os-nosdn-nofeature-ha:huawei-virtual2:compass”: [80.15]

}

The influence of the scenario

[image: TC083 influence of scenario]
{

“os-nosdn-nofeature-ha”: [1109.12],

“os-odl-nofeature-ha”: [531.63]

}

The influence of the POD

[image: TC083 influence of the POD]
{

“lf-pod1”: [2204.42],

“intel-pod18”: [1835.55],

“lf-pod2”: [1676.705],

“intel-pod5”: [1612.555],

“flex-pod2”: [1370.23],

“huawei-pod12”: [1300.12],

“huawei-pod2”: [1070.455],

“ericsson-pod1”: [1004.32],

“huawei-virtual9”: [753.46],

“huawei-virtual4”: [735.07],

“huawei-virtual3”: [493.985],

“arm-pod5”: [451.38],

“arm-pod6”: [193.43],

“huawei-virtual1”: [189.99],

“huawei-virtual2”: [80.15]

}

Fraser release

Test results per scenario and pod (higher is better):

{

“os-nosdn-nofeature-ha:lf-pod2:fuel”: [1893.39],

“os-nosdn-nofeature-ha:zte-pod2:daisy”: [1543.995],

“os-nosdn-nofeature-ha:lf-pod1:apex”: [1480.86],

“os-nosdn-nofeature-ha:intel-pod18:joid”: [1417.015],

“os-nosdn-nofeature-ha:huawei-pod12:joid”: [1028.55],

“os-nosdn-nofeature-ha:huawei-pod2:compass”: [1007.65],

“os-nosdn-nofeature-ha:ericsson-pod1:fuel”: [811.795],

“os-nosdn-nofeature-ha:huawei-virtual4:compass”: [552.95],

“os-nosdn-nofeature-ha:arm-pod6:fuel”: [227.655],

“os-nosdn-nofeature-ha:huawei-virtual1:compass”: [216.63],

“os-nosdn-nofeature-ha:huawei-virtual3:compass”: [59.255]

}

The influence of the POD

[image: TC083 influence of the POD]
{

“lf-pod2”: [1893.39],

“zte-pod2”: [1543.995],

“lf-pod1”: [1480.86],

“intel-pod18”: [1417.015],

“huawei-pod12”: [1028.55],

“huawei-pod2”: [1007.65],

“ericsson-pod1”: [811.795],

“huawei-virtual4”: [552.95],

“arm-pod6”: [227.655],

“huawei-virtual1”: [216.63],

“huawei-virtual3”: [59.255]

}

Test Results for yardstick-opnfv-ha

Details

There are two test cases, TC019 and TC025, for high availability (HA) test of
OPNFV platform, and both test cases were executed in CMCC’s lab with 3+2 HA
deployment, where the installer is Arno SR1 release of fuel.

TC019

This test case verifies the high availability of the openstack service, i.e.
“nova-api”, on controller node.
There are one attacker, “kill-process” which kills all “nova-api” processes,
and two monitors, “openstack-cmd” monitoring “nova-api” service by openstack
command “nova image-list”, while “process” monitor checks whether “nova-api”
process is running. Please see the test case description document for detail.

Overview of test results

The service_outage_time of “nova image-list” is 0 seconds, while the
process_recover_time of “nova-api” is 300 seconds which equals the running time
of this test case, that means the “nova-api” service can’t automatiocally
recover itself.

Detailed test results

All “nova-api” process on the selected controller node was killed, and results
of two monitors were collected. Specifically, the results of “nova image-list”
request were collected from compute node and the status of “nova-api” process
were collected from the selected controller node.

Each monitor was running in a single process. The running time of each monitor
was about 300 seconds with no waiting time between twice monitor running. For
“nova image-list”, the running times is 127, that’s to say there is one
openstack command request every 2.36 seconds; while the running times is 141
for “nova-api” process checking, the accurancy is about 2.13 seconds.

The outage time of each monitor, which the name is “service_outage_time” for
“openstack-cmd” monitor and “process_recover_time” for “process” monitor, is
defined as the duration from the begin time of the first failure request to the
end time of the last failure request.

All “nova image-list” requestes were success, so the service_outage_time of
“nova image-list” is 0 second, while “nova-api” processes were not running for
all “process” checking, so the process_recover_time of “nova-api” is 300s.

Rationale for decisions

The service_outage_time is 0 second, that means the failover time of openstack
service is less than 2.36s, which is the period of each request. However, the
process_recover_time equals test case runing time, that means the process is
not automatically recovered, so this test case is fail.

TC025

This test case verifies the high availability of controller node. When one of
the controller node abnormally shutdown, the service provided should be OK.
There are one attacker, “kill-process” which kills all “nova-api” processes,
and two “openstack-cmd” monitors, one monitoring openstack command
“nova image-list” and the other monitoring “neutron router-list”.
Please see the test case description document for detail.

Overview of test results

The both service_outage_time of “nova image-list” and “neutron router-list”
were 0 second.

Detailed test results

A selected controller node was shutdown, and results of two monitors were
collected from compute node.

The return results of “nova image-list” and “neutron router-list” requests from
compute node were collected, then the failure requestion time were statistic
service_outage_time of corresponding service.

Each monitor was running in a single process. The running time of each monitor
was about 300 seconds with no waiting time between twice monitor running. For
“nova image-list”, the running times is 49, that’s to say there is one
openstack command request every 6.12 seconds; while the running times is 28 for
“neutron router-list”, the accurancy is about 10.71 seconds.

The “service_outage_time” for two monitors is defined as the duration from the
begin time of the first failure request to the end time of the last failure
request.

All “nova image-list” and “neutron router-list” requestes were success, so the
service_outage_time of both two monitor were 0 second.

Rationale for decisions

As service_outage_time of all monitors are 0 second, that means there are none
failure request in this test case running time, this test case is passed.

Conclusions and recommendations

The TC019 shows the killed process will be not automatically recovered, which
should be imporved.

There are several improvement points for HA test:
a) Running test cases in different enveriment deployed by different installers,
such as compass4nfv, apex and joid, with different versiones.
b) The period of each request is a little long, it needs more accurate test
method.
c) More test cases with different faults and different monitors are needed.

Test Results for yardstick-opnfv-kvm

Details

Overview of test results

Detailed test results

Rationale for decisions

Conclusions and recommendations

Test Results for yardstick-opnfv-parser

Details

Overview of test results

Detailed test results

Rationale for decisions

Conclusions and recommendations

Task Template Syntax

Basic template syntax

A nice feature of the input task format used in Yardstick is that it supports
the template syntax based on Jinja2.
This turns out to be extremely useful when, say, you have a fixed structure of
your task but you want to parameterize this task in some way.
For example, imagine your input task file (task.yaml) runs a set of Ping
scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
-
 type: Ping
 options:
 packetsize: 200
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

context:
 ...

Let’s say you want to run the same set of scenarios with the same runner/
context/sla, but you want to try another packetsize to compare the performance.
The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
-
 type: Ping
 options:
 packetsize: {{packetsize}}
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1

 sla:
 max_rtt: 10
 action: monitor

context:
 ...

and then pass the argument value for {{packetsize}} when starting a task with
this configuration file.
Yardstick provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either
a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
--task-args '{"packetsize":"200"}'

2.Refer to a file that specifies the argument values (JSON/YAML):

yardstick task start samples/ping-template.yaml --task-args-file args.yaml

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for
your parameters.
With default values set, your task file will work even if you don’t
parameterize it explicitly while starting a task.
The default values should be set using the {% set … %} clause (task.yaml).
For example:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"
{% set packetsize = packetsize or "100" %}
scenarios:
-
 type: Ping
 options:
 packetsize: {{packetsize}}
 host: athena.demo
 target: ares.demo

 runner:
 type: Duration
 duration: 60
 interval: 1
 ...

If you don’t pass the value for {{packetsize}} while starting a task, the
default one will be used.

Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax,
including the mechanism of built-in functions.
As an example, let us make up a task file that will do a block storage
performance test.
The input task file (fio-template.yaml) below uses the Jinja2 for-endfor
construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

 scenarios:
{% for bs in ['4k', '8k', '64k', '1024k'] %}
 {% for rw in ['read', 'write', 'randwrite', 'randread', 'rw'] %}
-
 type: Fio
 options:
 filename: /home/ubuntu/data.raw
 bs: {{bs}}
 rw: {{rw}}
 ramp_time: 10
 host: fio.demo
 runner:
 type: Duration
 duration: 60
 interval: 60

 {% endfor %}
{% endfor %}
context
 ...

Yardstick Test Report

Table of Contents

	Yardstick Test Report

	Introduction

	Document Identifier

	Scope

	References

	Details

	TCXXX

	General

	Glossary

	Document change procedures and history

Introduction

Document Identifier

Scope

This document provides an overview of the results of test cases developed by
the OPNFV Yardstick Project, executed on OPNFV community labs.

OPNFV Continous Integration provides automated build, deploy and testing for
the software developed in OPNFV. Unless stated, the reported tests are
automated via Jenkins Jobs.

Test results are visible in the following dashboards:

	Testing dashboard: uses Mongo DB to store test results and Bitergia for
visualization

	Yardstick Dashboard: prototyped by Yardstick, uses influx DB to store test
results and Grafana for visualization

References

Details

TCXXX

	Overview of test results
.. general on metrics collected, number of iterations

	Detailed test results
.. info on lab, installer, scenario

	Rationale for decisions
.. pass/fail

	Conclusions and recommendations
.. did the expected behavior occured?

General

Glossary

Document change procedures and history

Yardstick Test Case Description TCXXX

	test case slogan e.g. Network Latency

	test case id

	e.g. OPNFV_YARDSTICK_TC001_NW Latency

	metric

	what will be measured, e.g. latency

	test purpose

	describe what is the purpose of the test case

	configuration

	what .yaml file to use, state SLA if applicable, state
test duration, list and describe the scenario options used in
this TC and also list the options using default values.

	test tool

	e.g. ping

	references

	e.g. RFCxxx, ETSI-NFVyyy

	applicability

	describe variations of the test case which can be
performend, e.g. run the test for different packet sizes

	pre-test
conditions

	describe configuration in the tool(s) used to perform
the measurements (e.g. fio, pktgen), POD-specific
configuration required to enable running the test

	test sequence

	description and expected result

	step 1

	use this to describe tests that require sveveral steps e.g
collect logs.

Result: what happens in this step e.g. logs collected

	step 2

	remove interface

Result: interface down.

	step N

	what is done in step N

Result: what happens

	test verdict

	expected behavior, or SLA, pass/fail criteria

Yardstick

The project’s goal is to verify infrastructure compliance, from the perspective
of a Virtual Network Function (VNF).

The Project’s scope is the development of a test framework, Yardstick, test
cases and test stimuli to enable Network Function Virtualization Infrastructure
(NFVI) verification.

In OPNFV Brahmaputra release, generic test cases covering aspects of the
metrics in the document ETSI GS NFV-TST001 [https://docbox.etsi.org/ISG/NFV/Open/Drafts/TST001_-_Pre-deployment_Validation/], “Pre-deployment Testing; Report on
Validation of NFV Environments and Services” are available; further OPNFV
releases will provide extended testing of these metrics.

Yardstick is used in OPNFV for verifying the OPNFV infrastructure and some of
the OPNFV features. The Yardstick framework is deployed in several OPNFV
community labs. It is installer, infrastructure and application
independent.

See also

This Presentation [https://wiki.opnfv.org/_media/opnfv_summit_-_yardstick_project.pdf] for an overview of Yardstick and
Yardsticktst [http://events17.linuxfoundation.org/sites/events/files/slides/OPNFV%20Summit%20-%20bridging_opnfv_and_etsi.pdf] for material on alignment ETSI TST001 and Yardstick.

Yardstick Test Case Description: NSB vBNG RFC2544 QoS TEST CASE

	NSB vBNG RFC2544 QoS base line test case without link congestion

	test case id

	tc_bng_pppoe_rfc2544_ixia_IMIX_scale_up

	metric

	Network metrics:
* TxThroughput
* RxThroughput
* TG packets in
* TG packets out
* Max Latency
* Min Latency
* Average Latency
* Packets drop percentage

PPPoE subscribers metrics:
* Sessions up
* Sessions down
* Sessions Not Started
* Sessions Total

NOTE: the same network metrics list are collecting:
* summary for all ports
* per port
* per priority flows summary on all ports

	test purpose

	This test allows to measure performance of BNG network device
according to RFC2544 testing methodology. Test case creates
PPPoE subscriber connections to BNG, runs prioritized traffic
on maximum throughput on all ports and collects network
and PPPoE subscriber metrics.

	configuration

	The BNG QoS RFC2544 test cases are listed below:

	tc_bng_pppoe_rfc2544_ixia_IMIX_scale_up.yaml

Mentioned test case is a template and number of ports in the
setup could be passed using cli arguments, e.g:

yardstick -d task start –task-args=’{vports: 8}’ <tc_yaml>

By default, vports=2.

Test duration:
* set as 30sec;

Traffic type:
* IPv4;

Packet sizes:
* IMIX. The following default IMIX distribution is using:

uplink: 70B - 33%, 940B - 33%, 1470B - 34%
downlink: 68B - 3%, 932B - 1%, 1470B - 96%

VLAN settings:
* QinQ on access ports;
* VLAN on core ports;

Number of PPPoE subscribers:
* 4000 per access port;
* 1000 per SVLAN;

Default ToS bits settings:
* 0 - (000) Routine
* 4 - (100) Flash Override
* 7 - (111) Network Control.

The above fields are the main options used for the test case
and could be configured using cli options on test run or
directly in test case yaml file.

	test tool

	IXIA IxNetwork

IXIA IxNetwork is using to emulates PPPoE sessions, generate
L2-L3 traffic, analyze traffic flows and collect network
metrics during test run.

	applicability

	Mentioned BNG QoS RFC2544 test case can be configured with
different:

	Number of PPPoE subscribers sessions;

	Setup ports number;

	IP Priority type;

	Packet size;

	Enable/disable BGP protocol on core ports;

Default values exist.

	references

	RFC2544

	pre-test
conditions

	
	BNG is up and running and has configured:

	access ports with QinQ tagging;

	core ports with configured IP addresses and VLAN;

	PPPoE subscribers authorization settings (no auth or
Radius server, PAP auth protocol);

	QoS settings;

	IxNetwork API server is running on specified in pod.yaml
file TCL port;

	BNG ports are connected to IXIA ports (IXIA uplink
ports are connected to BNG access ports and IXIA
downlink ports are connected to BNG core ports;

	The pod.yaml file contains all necessary information
(BNG access and core ports settings, core ports IP
address, NICs, IxNetwork TCL port, IXIA uplink/downlink
ports, etc).

	test sequence

	description and expected result

	step 1

	Yardstick resolves the topology and connects to IxNetwork
API server by TCL.

	step 2

	Test scenarios run, which performs the following steps:

	Create access network topologies (this topologies are
based on IXIA ports which are connected to BNG access
ports);

	Configure access network topologies with multiple device
groups. Each device group represents single SVLAN with
PPPoE subscribers sessions (number of created on port
SVLANs and subscribers depends on specified if test case
file options);

	Create core network topologies (this topologies are
based on IXIA ports which are connected to BNG core
ports);

	Configure core network topologies with single device
group which represents one connection with configured
VLAN and BGP protocol;

	Establish PPPoE subscribers connections to BNG;

	Create traffic flows between access and core ports
(traffic flows are creating between access-core ports
pairs, traffic is bi-directional);

	Configure each traffic flow with specified in traffic
profile options;

	Run traffic with specified in test case file duration;

	Collect network metrics after traffic was stopped;

	In case drop percentage rate is higher than expected,
reduce traffic line rate and repeat steps 7-10 again;

	In case drop percentage rate is as expected or number
of maximum iterations in step 10 achieved, disconnect
PPPoE subscribers and stop traffic;

	Stop test.

	step 3

	During each iteration interval in the test run, all specified
metrics are retrieved from IxNetwork and stored in the
yardstick dispatcher.

	test verdict

	The vBNG RFC2544 test case will achieve maximum traffic line
rate with zero packet loss (or other non-zero allowed
partial drop rate).

Yardstick Test Case Description: NSB vBNG RFC2544 QoS TEST CASE

	NSB vBNG RFC2544 QoS base line test case with link congestion

	test case id

	tc_bng_pppoe_rfc2544_ixia_8ports_1port_congested_IMIX

	metric

	Network metrics:
* TxThroughput
* RxThroughput
* TG packets in
* TG packets out
* Max Latency
* Min Latency
* Average Latency
* Packets drop percentage

PPPoE subscribers metrics:
* Sessions up
* Sessions down
* Sessions Not Started
* Sessions Total

NOTE: the same network metrics list are collecting:
* summary for all ports
* per port
* per priority flows summary on all ports

	test purpose

	This test allows to measure performance of BNG network device
according to RFC2544 testing methodology. Test case creates
PPPoE subscribers connections to BNG, run prioritized traffic
causing congestion of access port (port xe0) and collects
network and PPPoE subscribers metrics.

	configuration

	The BNG QoS RFC2544 test cases are listed below:

	tc_bng_pppoe_rfc2544_ixia_8ports_1port_congested_IMIX.yaml

Number of ports:
* 8 ports

Test duration:
* set as 30sec;

Traffic type:
* IPv4;

Packet sizes:
* IMIX. The following default IMIX distribution is using:

uplink: 70B - 33%, 940B - 33%, 1470B - 34%
downlink: 68B - 3%, 932B - 1%, 1470B - 96%

VLAN settings:
* QinQ on access ports;
* VLAN on core ports;

Number of PPPoE subscribers:
* 4000 per access port;
* 1000 per SVLAN;

Default ToS bits settings:
* 0 - (000) Routine
* 4 - (100) Flash Override
* 7 - (111) Network Control.

The above fields are the main options used for the test case
and could be configured using cli options on test run or
directly in test case yaml file.

NOTE: that only parameter that can’t be changed is ports
number. To run the test with another number of ports
traffic profile should be updated.

	test tool

	IXIA IxNetwork

IXIA IxNetwork is using to emulates PPPoE sessions, generate
L2-L3 traffic, analyze traffic flows and collect network
metrics during test run.

	applicability

	Mentioned BNG QoS RFC2544 test cases can be configured with
different:

	Number of PPPoE subscribers sessions;

	IP Priority type;

	Packet size;

	enable/disable BGP protocol on core ports;

Default values exist.

	references

	RFC2544

	pre-test
conditions

	
	BNG is up and running and has configured:

	access ports with QinQ tagging;

	core ports with configured IP addresses and VLAN;

	PPPoE subscribers authorization settings (no auth or
Radius server, PAP auth protocol);

	QoS settings;

	IxNetwork API server is running on specified in pod.yaml
file TCL port;

	BNG ports are connected to IXIA ports (IXIA uplink
ports are connected to BNG access ports and IXIA
downlink ports are connected to BNG core ports;

	The pod.yaml file contains all necessary information
(BNG access and core ports settings, core ports IP
address, NICs, IxNetwork TCL port, IXIA uplink/downlink
ports, etc).

	test sequence

	description and expected result

	step 1

	Yardstick resolve the topology and connects to IxNetwork
API server by TCL.

	step 2

	Test scenarios run, which performs the following steps:

	Create access network topologies (this topologies are
based on IXIA ports which are connected to BNG access
ports);

	Configure access network topologies with multiple device
groups. Each device group represents single SVLAN with
PPPoE subscribers sessions (number of created on port
SVLANs and subscribers depends on specified if test case
file options);

	Create core network topologies (this topologies are
based on IXIA ports which are connected to BNG core
ports);

	Configure core network topologies with single device
group which represents one connection with configured
VLAN and BGP protocol;

	Establish PPPoE subscribers connections to BNG;

	Create traffic flows between access and core ports.
While test covers case with access port congestion,
flows between ports will be created in the following
way: traffic from two core ports are going to one access
port causing port congestion and traffic from other two
core ports is splitting between remaining three access
ports;

	Configure each traffic flow with specified in traffic
profile options;

	Run traffic with specified in test case file duration;

	Collect network metrics after traffic was stopped;

	Measure drop percentage rate of different priority
packets on congested port. Expected that all high and
medium priority packets was forwarded and only low
priority packets has drops.

	Disconnect PPPoE subscribers and stop test.

	step 3

	During test run, in the end of each iteration all specified
in the document metrics are retrieved from IxNetwork and
stored in the yardstick dispatcher.

	test verdict

	The test case is successful if all high and medium priority
packets on congested port was forwarded and only low
priority packets has drops.

 _images/tc014_pod_fraser.png
pod_name

3000

-

1500

1000

gpod-wie
spod-ue
Elenuin-uossae
Tlenunmeny
Z1podameny
Zenunmeny
vienuinameny
elenunameny
lenun-uossoLE
zpod-ameny
Zenuin-uossae
zpodanz
sTpodoru
Tpod-uossae
Tpody

zpody)

_images/tc014_scenario.png
y_scenario

deplo

1500 -

1000 -

ey-uoiequado-upsou-so
ey-wmtupsou-so
eyou-2jspos0
eyou-wt-UpsOU-S0
eyou-aINEajoU-£[[po-s0
ey-Apdp sAo-upsou-so
BYOU-U0OW-Z[[Po-S0
ey-2ysiposo

eyou-3pdp sAo-upsou-so
ey-a1njeajou-g[|po-so
el1eq-upsou-so
ey-uoowr-z[po-s0
ey-21Mes0U-Upsou-s0
eyoU-IMEBJOU-UpSOU-50
eyoU-2IMEBJ0U-PO-50
eyousno-upsou-so
ey-2unea0u-1po-50
eyou-1eq-upsou-so
eY4OU-BIMEBJOU-UNG-50
esno-upsou-so

_images/tc012_scenario_fraser.png
eyou-wAY-UpsoU-s0
eyou-aINeajou-£[[po-so
ey2Imesjou-po-so

eyou-ieq-upsou-so
euou-djspos0
eUoU-BINEB0U-UpSOU-SO
eyaimeajou-upsou-so
ey-wmrupsouso
ey-21njeajou-£[|po-s0
ey-2ys-po-so

eyeq-upsou-so

deploy_scena

eyousno-upsouso
eyou-2InEs0upO-50
eysno-upsouso
e-uoiequado-upsou-so

| eyou-osdiie>-upsou-so
4 L evouaimesou-uno-so
T T T T

“sdg yIpIMpUEq

_images/tc014_pod.png
pod_name

3000

Sasay

000

Bis

1500

1000

gpod-wie
spod-ue
sienuin-omeny
Z1podameny
Tlenun-ameny
6lenuinameny
iemunameny
€lemun-ameny
vienunameny
Zenuin-uossoe
zpod-ameny
Elenuin-uossaLE
lenun-uossoLD
Tpod-uossae
TlenuIn-uossILR
zpoday
gTpodau
spod-au
Tpody

zpody)

_images/tc069_pod_fraser.png
pod_name

£ % 5 8 §8 38 3

“sdg yIpImpueg s Tynsay

Tlenunmeny
Elenuin-uossae
lenun-uossoe
Tpody

zpody
elenunameny
vienuinameny
Zenuin-uossae
spod-ue
Zenunomeny
zpod-ameny
Z1podameny
Tpod-uossae
zpodanz
gpod-wie
gTpod-pIu)

_images/tc069_scenario.png
y_scenario

deplo

eyou-eq-upsou-so
euteq-upsou-so
eu-sno-upsou-so
eyou-2InEaj0U-unc-50
eyoU-WAY-UpsoU-S0
eu-wmrupsou-so
eyou-2InEB0UpO-50
euou-sno-upsou-so
euou-2jspo-s0
eyou-ipdp™sno-upsou-so
eyaImeajou-1po-so
eyoU-BINEB0U-UpSOU-SO
ey-ysiposo
eyoU-aINEaoU-£[[po-s0
euatpdp sno-upsou-so

Ey-21njeajou-£[|po-s0
ey-21Me30U-Upsou-s0
ey-uoow-z| |po-s0
e-uoiequado-upsou-so

_images/tc014_scenario_fraser.png
y_scenario

deplo

3500 -

3000 -

1500 -

1000 |

eyou-wmt-upsou-so
eyou-aINeajou-£[[po-so
eyou-aIMEBjoU-UpSOU-50
eyou-teq-upsou-so
eyou-2js{poso
ey-wmtupsou-so
eueq-upsou-so
eyaysiposo
ey-21njeajou-£[|po-s0
eyousno-upsouso
ey-2imesjou-upsou-so
ey-2inea0u-1po-s0
eysno-upsouso
ey-uoiequado-upsou-so
eyou-2IMEBj0U-PO-50
eyou-BIMEBj0U-UNG-50
eyou-osdiie>-upsou-so

_images/tc069_pod.png
pod_name

sienuin-meny
zpody

Tpody
Zenuin-uossoe
vienunameny
Elenun-uossoLR
Tlenun-ameny
emunameny
elenun-ameny
spod-ue
lenyin-uossoLE
TlenuIn-uossILE
slenuin-ameny
zpod-ameny
Z1podameny
Tpod-uossae
zpoday
gpod-we
spod-pul
gTpod-pIu

“sdgw [ipimpueg s Tnsay

_images/tc069_scenario_fraser.png
eyou-BIMEBj0U-UNG-50
eyou-Ieq-upsou-s0
ey-sno-upsou-so
eyou-osdjex-upsou-so
ey-w-upsoU-so
eyou-BIMEBj0U-E[p0-50
ey-1eq-upsou-so
eyoU-sAO-UpSOU-50
eyou-2IMEBj0U-PO-50
eyou-y5-po-50
eyoU-WF-UpsoU-50
eyou-2IMEBj0U-UpSOU-50

deploy_scena

eyaysiposo
eyaumesjou-gpo-so
eyaumeajou-upsou-so
eyaimeajou-1po-so

L ey-uorequado-upsouso

18000
14000 |
12000 -
10000 -
8000 |
5000 |

“sdg yIpImpueg s Tynsay

_images/tc082_pod.png
pod_name

1500 -

_
PO - R,

Z1podameny
sTpod-aru
spod-eul
Tpod-uossae
zpody

Tpody
zpoday
zpod-ameny
spod-ue
slenui-ameny
vienun-ameny
glenun-ameny
Zienun-ameny
Tenun-ameny

gpod-wie

_images/PROX_Gen_2port_cfg.png
ea options
e P imber ot semory cramers <= 1

no-output=no ; disable DPDK debug output

[variables]
Ssut_mact-ggdst maco

S3ut_mac1-godst macl ==

wernes) <4

mempool size=4K

Bitthes <35

name=Basic Gen

o <16

oy <=7

So080000
+ Ethernet + Ip + UDP

PKE inline=s{sut maca} 70 00 00 60 00 01 08 60 45 00 00 1c 00 01 60 00 49 11 7 74 98 10 64 01 98 10 64 62 13 88 13 88 00 08 55 Tb
P src_ip: 152.16.100.0/8

Fandoa=0000 1K

rand_offset=29

+ dst ip: 152.16.100.0/8

Fandoa=00001X0

rand_offset=33

randon=000 109111000 1X0X00100111000 10

rand_offs:

[core 2]

+ Ethernet + Ip + UDP
PKE inline=s{sut macl} 70 00 00 60 00 01 08 60 45 00 00 1c 00 01 60 00 49 11 7 74 98 10 28 01 98 10 28 62 13 88 13 88 00 08 55 Tb
P src_ip: 152.16.40.0/8

Fando=100110060001500001010000000 0

rand_offset=26

+ dst ip: 152.16.40.0/8

Fando=10011006001500001010000000 10

rand_offset=30

randon=000 109111000 1X0XB0010011 100010

rand offset=34

[core 3]

Tt pos=£2

[core 4]

Tt pos=£2

_images/PROX_Gen_GUI.png
q

1,23 4,5 6
(all tasks)
(all tasks)

2ag

203

q

11 tasks)
11 tasks)
on core 7

to start...Entering main loop on core 8

core 2 to start... oK
core 3 to start... oK
core 4 to start... oK
core 5 to start... oK
core 6 to start... oK
core 7 to start... oK
core 8 to start... 0K
TX port 0 (queue 0)

TX port 1 (queue 0)

TX port 2 (queue 0

TX port 3 (queue 0)
RX port 0 (queue 0

RX port 1 (queue 0
RX port 2 (queue
RX port 3 (queue 0
with 14 warnings, last 5 warnings:
warn Unsupported packet type a008 - CRC might be wrong

warn Unsupported packet type a008 - CRC might be wrong

warn Unsupported packet type a008 - CRC might be wrong

warn Failed to open msr pseudo-file (missing msr kernel module?

CPU supports RDT but msr module not loaded. Disabling RDT stats

_images/PROX_BNG_QOS.png
LB = Load Balancing
W = Worker
TX = 10 Transmit
Qo$=QoS Scheduler

™

Claslfy+ >

@ Traffic from CPE to Internet (upload)

<+———0 Traffic from Internet to CPE (download)

_images/PROX_Baremetal_config.png
nodes

name: "trafficgen 1 <= 1
role: TrafficGen
ipiL11a
user: root
ssh_port
password
key_filename:
T " e 2
xe0:

vpci: 0000:05:00.0"

ca:30:3d:50"

Tocal_ip: "152,16.100. 1
netmask: "255.255.255.0"
dpdk_port_num: 0

xel
Vpci: "0000:05:00.1"
Tocal_mac 05:ca:30:3d:51"
driver: “idoe

Tocal_ip: "152.16.40.19"
netmask: "255.255.255.0"
dpdk_port_num: 1

<=3

<=4

name: "vn <=

role: WF 5

ip: 1.1.1.2

user: "root

ssh_port

password

key_filenane

e s g

xe0

Vpci: "0000:05:00.0" <
local_mac: "68:05:ca:30:3c:68" 7

driver: "idoe"
Tocal_ip: '152.16
netnask: "255.255
dpdk_port_num: 0

xel
vpei: "0000:05:00.1" <=8

ca:30:3¢:69"

Tocal_ip: "152.16.49.21
netmask: "255.255.255.0"
dpdk_port_num: 1

routing table
- network: "152.16.100.20" <=9
netnask: "255.255.255
gateway: *152.16.100.2
e
- network: "152.16.40.20"
netnask: "255.255.255

gateway:
if: "xel

152.16.40.20"

nd_route_tbl

- network: "0064:f9b:0:0:0:0:9810:6414"
netnask: "112"
gateway: "0064:7fob:0:0:0:0:9810:6414"
if: "xed!

- network: "0064:f9b:0:0:0:0:9810:2814"
netnask: "112"

gateway: "0064:7fob:0:0:0:0:9810:2814"

if: "xes

<=10

_images/PROX_Grafana_1.png
Packets Per Secand

OPNFV_Yardstick NSB_PROX_BM_L3FWD_4Port_Test

The application performs routing of packets with LPM based look-up method. The KPI is the number of packets per second for a specified

Cumlative Load Sert by Generator

138
0
2l
sl
38

0
NI N0 13230

— Cumulative Packets Sents

naE o naEe

<ted to Generator

13300

35

13330

13400

packet size with an accepted minimal packet loss

11:3430

13500

13530

13600

Generator tats: Average Throughout per step

36

na

3

3

40

N1

113630

N2

3700

43

min
32510

Cumulative Load Sent by Generator

3730

11:44

585238

13800

1:3830

MmO M A0 11030
Throughput
20
1024
& s
26
£
o
s e omsm mw s
avg
194754 — Packersize

14100

36

TestInterval

30

14130

na

14200

Test Parameters

14230

Packet size

3

3

14300

140

14330

041

Test Duration

8800

14400 11:4430

min
52,6885 Mil

na2 a3

Tolerated Loss

0.010

14500 114530

max avg
WA EN 63649 Bl

a4 s

min max avg
G 1sE 2w

_images/tc083_pod_fraser.png
pod_name

o v { elemunameny

J uenunaneny
@ I apod-uue

} b venuinameny

] I tpod-uossoua

i I zpod-ameny

.mA | ztpod-emeny
b stpod-eau
f- Tpody

b zpod-oxz

f- zpody

2500
2000 -|

1500 -|
1000 -|
500

ndybnoJs

n

_images/tc083_scenario.png
y_scenario

deplo

180

- eyainjeajoupo-so

L eyaineajou-upsou-so

2000 -

500

_images/tc082_scenario.png
1500

158

PO N,

- eyainieajou-upsou-so

L eyainjeajouipo-so

s

_images/tc083_pod.png
pod_name

[ziemunsameny

S temunemeny
§ | opod-wue

*m. L spod-uue

e 4 | eemunemeny

- Ty | vienuincameny
I slemunsameny

i oy | tpod-uossoua

.3 L zpod-ameny

qh b ztpod-emeny

o - zpod-xay.
b spodeu
f- zpody

I stpod-eaun
f- Tpody

2000 -
500 -

T
4y

5 1500 -

ndyBnoJs

_images/Grafana_config.png
Main Org.

‘Grafana admin

Sign out

(0

Datasources > Overview Addnew Edit

Edit data source
Name yardstickevtc Defautt
Type w08 08X |
Hitp settings
w e e I

HipAuth BasicAuth « With Credentials

User admin Password s

Database yardstick

User admin Password +wr

_images/InfluxDB_store.png
Grafana

Influx DB

Direct data post

Storperf

_images/test_execution_flow.png
Task
Commands Context

Test
Scenario

Dispatcher

Openstack

do a test

[parse context
2|

run the test

test end

undeploy fieat stack

_images/Deployment.png
Yardstick

Jump
Server
Network
Control Control Compute Compute Compute
Server Server Server Server Server

_images/vPE_Diagram.png
Downstream

Upstream
Flow’

ssifier

Marin

_static/file.png

_images/tc082_pod_fraser.png
pod_name

t
T
[
1

= I

b zpod-oxz

[zpody

stpod-pur

Z1podameny
f- Tpody

b zpod-ameny

plemun-ameny

Tpod-uossae

elemun-ameny
b temunameny

L gpod-uue

T

_
PRI -

1500 -

_static/minus.png

_static/plus.png

_images/PROX_Grafana_4.png
128

2%

12

1024

1280

1518

NiA

505238

788

181159

93085

47893

38462

32510

niA

226785

187728

17,5846

93951

47880

38454

32500

niA

26731

187703

169302

93048

47878

38453

32499

NiA

72742422

591102503

553335058

288914260

150523772

118366248

102172158

NiA

712736704

591060352

553334784

28891141

150519705

11836214

102168483

niA

718

a5

£

2819

4104

3675

niA

71274

59110

55333

28891

15052

11836

10217

NiA

15,2363

2241

73819

90845

99877

99907

99862

NiA

_images/PROX_Grafana_5.png
® ¢ > B o+

Collapse
Add Panel
Row Options.
Mave Up
Mave Dawn

Remave

avg
Ma

avg
Ma

£ \]
I I =

EEEC T
2 asmk M

Vb

N2 onm

— wel Latency Avg
— el Latency Max

vd

N2 onm

— we3 Latency Avg
— ve3 Latency Max

et Latency
o e
e Latency
L
= /
o e

E T
1w 40K 7

_images/PROX_Grafana_2.png
jon Packets Per Secand

Wi

jan Packets per Secand

Wi

na2

— TG we-0 Out packers
TG #e-1 Out packets.
— TG we-2 Out packers
TG #e-3 Out packets.

£l

na2

— SUT Packets Recelved

1134

1134

35

35

Packets Sent by Generator per second and per interface

386

36

na

3

138

140

SUT stats - Load Received By SUT

na

3

3

40

na e 4

na e 4

min
0

11:44

11:44

45
max avg
127685 38885
2762 2R
127680 2EE
127680 38888
45
max avg
w72 166SE

na: na

— TG w0 in packets.
TG ve-1 in packets
— TG we-2 in packets.
TG ve-3 in packets

£l

n:

— SUT Packers Sent

Generator Stats: Packets per Step

Packets Received by Generator per second and per interface

nw @ ME w40

SUT stats - Load Forwarded By SUT

nw M@ ME w40

na e 4

na e 4

min
0

11:44

11:44

45
max avg
T amE
127665 38188
27 A
27663 287
45
max avg
255063 163008

_images/PROX_Grafana_3.png
Packets Sent by Generator per Step Packets Received by Generator per Step

o o
£ m 2 s
< im0 g
E £
£ g
B e

nR o ommo Mmoo Mmoo Mmoo mE o ma o md o N na e N8 N s o TP
i omex wg o wg
164 Out packets w50 amres 135134 TG mpacees w0 T e
w6 Out packets s s 16 mpadees sws T e
16 a2 Out packets s a1 Zt6he 2 mpadees spy man s
e o1 11536 s e s 161 mpadees s meam s
— success T i
= SUCCESS R Totat 713 Ml 5 CRITERIA: TX Total = Rx Total + Tolerated Loss Line Rate
w0 = SUCCES ALLOVABLE LoST paCETS. 71K .
LN g
B s =N & oow
2 K N\ EE e B
2 oo H
- F
£ -
] & LT
ne nwm e mm mwm nw mm nm e mn mw e e s NRoma ma mes Mmoo M@ nmo nd N e e e e s
e g v mex g
— success 7ol W e s — WaLine e stk 7w
Z success RuTonl o e s N L e otk s
. Success ALLowaaLE LoST PACKETS o ok s Z CurentLne e v too 70w
Performance Stats

aprs)

] T

M o U

R S

P (o]

_images/PROX_Hardware_Arch.png
Internet (Proxy)
e

g
e

LAB Switch

Controller Node

LAB Gateway Machine

Compute Node Legend:

s Kolla admin interface (eno1)
Neutron external n/w (eno2)
Prox Back to Back Connection

(ens787f0, ens787f1, ens787f2 and
ens787f3)

_images/PROX_Openstack_stack_list.png
root@877b4b£752c3: /home/opnfv/repos/yardstick/yardstick/resources/files# openstack stack list
.
| Creation Time

| ID

08ccb02d-e25F-4d58-91el-c82£cd57£530

| 2017-11-16T17:5!

_images/PROX_Grafana_6.png
CPU Utilization

Traffic Generator CPU Utilization VNF cPU Utilization
100 100 -
w @
o "
a0
a0
2
2
o aa o A AW AL LA LA
nw onm n@ o mam n@ A ma e e s s .
I - R e T e T T T e Tyt
— cPuo Utiizztion o000 B2 NaNGDoOD min max avg
— CPU1 Utizztion - GenED 0O0000 9300830 Nan.000D — cPuo Utiizztion oo SE2s24 NaN.0wooo
— CPU2 Utizzton - Gen XE1 00000 9300830 Nan.0000D — CPUY Utization - RXXED - Routing XED and XE1 0000000 9900830 Nan.00o0D
CPU3 Utization - Gen e 000000 9300830 Nan.0000D — CPU2 Utization - RXXET - Routing XED and XE1 0000000 10000000 Nan.00000
CPU A Utizztion - Gen XE3 o000 5300830 Nan.o000D . CPU3 Utiization - FXXE2 - Routing XE2 and XE3 0000000 S3.0030 Nan.00o0D
— CPU s Utization - Latency Y60 000000 8300000 Nan.0000D — CPU A Utiization - FXXE3 - Routing XE2 and XE3 0000000 930030 Nan.00o0D
— CPUS Utizaton - Lateny Y€1 o000 9300830 Nan.0000D — cPUs Utiizaton - (dle oo 7766 NeN.0oooo
— CPU7 Utizztion - Latency 1E2 000000 9SSR Nan.oOo0D — CPUs Utiizaton - (dle oo as00se NeN.0oooo
— CPUB Utization - Latency 163 00000 530030 Nan.0000D — cPu7 Utiizaton - Idle oo 700000 NeN.0ooo

CPU B Utiization - die 000000 500000 Nah.00000 — CPUB Utilization - Idle 000000 BO00D0 NaNODDOD

_images/PROX_Handle_2port_cfg.png
[eal options]
-n=4
no-output=no ; disable DPDK debug output <= 1

[port 6]

name=ifo

mac=hardware <:| 2
rx desc=2048

tx desc=2048

promiscuous=yes

Tport 11
name=if1
mac=hardware
rx desc=2048
tx desc=2048
promiscuous=yes

[defaults]
mempool size=8K 3

memcache size=512

[global]
start time=5 4
name=Handle L2FWD Multiflow (2x)

[core 0]

mode=master <5
[core 1]

name=none

task=0 <:| 6
node=12fwd

dst mac=@@tester macl

X port=ifo

drop=no

[core 2]

name=none

task=0

mode=12fwd

dst mac=@@tester_maco
rx port=ifl

tx port=ifo

drop=no

_images/PROX_Openstack_stack_show_a.png
root@877b4bf752c3: /home/opnfv/repos/yardstick/yardstick/resources/files# openstack stack show 08ccb02d-e25f-4d58-91el-c82fcd57£530

e S -
id 08ccb02d-e25f-4d58-91el1-c82£fcd57£530
stack_name yardstick-3c9dbfb4
description Stack built by the yardstick framework for root on host 877b4bf752c¢3 2017-11-16 17:55:55.

All referred generated resources are prefixed with the template
name (i.e. yardstick-3c9dbfb4).

creation_time 2017-11-16T17:55:59Z

updated_time None

stack_status CREATE_COMPLETE

stack_status_reason Stack CREATE completed successfully

parameters 0S::project_id: 2a2a87eee6064951a0e604f29d1b7886

0s::stack_i 08ccb02d-e25f-4d58-91el-c82fcd57£530
0S::stack_name: yardstick-3c9dbfb4

outputs - description: Device ID for interface vnf_0.yardstick-3c9dbfb4-downlink_O-port
output_key: vnf_0.yardstick-3c9dbfb4-downlink O-port-device_id
output_value: c4dfa786-426c-4f5a-a2d7-e6188d8cc859

- description: Flavor yardstick-3c9dbfb4-flavor ID
output_key: yardstick-3c9dbfb4-flavor
output_value: yardstick-3c9dbfb4-flavor

- description: Address for interface tg_0.yardstick-3c9dbfb4-uplink O-port
output_ke; tg_0.yardstick-3c9dbfb4-uplink O-port

output_value: 10.0.2.6
- description: floating ip vnf_0.yardstick-3c9dbfb4-fip
output_key: vnf_0.yardstick-3c9dbfb4-fip

output_value: 172.16.2.158
- description: Address for interface tg_0.yardstick-3c9dbfb4-downlink O-port
output_key: tg_0.yardstick-3c9dbfb4-downlink_O-port
output_value: 10.0.3.10
- description: MAC Address for interface tg_0.yardstick-3c9dbfb4-downlink 2-port
output_key: tg_0.yardstick-3c9dbfb4-downlink_2-port-mac_address
output_value: fa:16:3e:33:58:6d
- description: Address for interface tg_0.yardstick-3c9dbfb4-downlink_1l-port
output_ke; tg_0.yardstick-3c9dbfb4-downlink 1l-port-subnet_id
output_value: 3216d2bc-6£96-447d-b834-9cdcc221841b

_images/PROX_Openstack_stack_show_b.png
output_ke vnf_0.yardstic:
output_value: 10.0.5.9
description: Address for interface vnf_0.yardstick-3c9dbfb4-downlink_l-port
output_key: vnf_0.yardstick-3c9dbfb4-downlink_ l-port-subnet_id

output_value: 3216d2bc-6£96-447d-b834-9cdcc221841b

description: floating ip tg_0.yardstick-3c9dbfb4-fip <j

output_key: tg_0.yardstick-3c9dbfb4-fip

output_value: 172.16.2.156

description: subnet yardstick-3c9dbfb4-downlink_ 1-subnet ID

output_key: yardstick-3c9dbfb4-downlink_1l-subnet

output_value: 3216d2bc-6£96-447d-b834-9cdcc221841b

description: Network ID for interface tg_0.yardstick-3c9dbfb4-mgmt-port
output_key: tg_0.yardstick-3c9dbfb4-mgmt-port-network_id

output_value: 17d114d2-6444-4361-ab5f-fd32e47£ffd3a

description: MAC Address for interface vnf_0.yardstick-3c9dbfb4-downlink_l-port
output_key: vnf_0.yardstick-3c9dbfb4-downlink_ l-port-mac_address
output_value: fa:16:3e:30:7a:lc

description: Device ID for interface tg_0.yardstick-3c9dbfb4-downlink O-port
output_key: tg_0.yardstick-3c9dbfb4-downlink_O-port-device_id

output_value: eaf6c542-62ec-4702-9daa-0b8bf6007fce

description: subnet yardstick-3c9dbfb4-downlink_ 1-subnet cidr

output_key: yardstick-3c9dbfb4-downlink_1l-subnet-cidr

output_value: 10.0.4.0/24

description: subnet yardstick-3c9dbfb4-downlink O-subnet ID

AFPIE Fetw: vardeticok-200dhfhd_deunlink A—ethnet

_images/PROX_SUT_GUI.png
2,3, 4
(all tasks)
(all tasks)
Entering main loop on core
fstarting 3 (all tasks
Entering main loop on core 2
4 (all tasks
ring main loop on c

po)
po3
po3
po;
rn

iled to open msr pseudo-file (m
supports RDT but msr module n

ot

abling RDT stats

nav.xhtml

 Table of Contents

 		
 Yardstick

 		
 Yardstick Release Note

 		
 Yardstick Release Notes

 		
 Abstract

 		
 Version History

 		
 Important Notes

 		
 OPNFV Iruya Release

 		
 Release Data

 		
 Deliverables

 		
 Version Change

 		
 Scenario Matrix

 		
 Test results

 		
 Iruya 9.0.0 known restrictions/issues

 		
 Useful links

 		
 Yardstick User Guide

 		
 Introduction

 		
 About This Document

 		
 Contact Yardstick

 		
 Methodology

 		
 Abstract

 		
 ETSI-NFV

 		
 Metrics

 		
 Architecture

 		
 Abstract

 		
 Overview

 		
 Use-Case View

 		
 Logical View

 		
 Process View (Test execution flow)

 		
 Deployment View

 		
 Yardstick Directory structure

 		
 Yardstick Installation

 		
 Prerequisites

 		
 Install Yardstick using Docker (first option) (recommended)

 		
 Install Yardstick directly in Ubuntu (second option)

 		
 Install Yardstick directly in OpenSUSE

 		
 Verify the installation

 		
 Automatic installation of Yardstick

 		
 Deploy InfluxDB and Grafana using Docker

 		
 Deploy InfluxDB and Grafana directly in Ubuntu (Todo)

 		
 Proxy Support

 		
 References

 		
 Yardstick Usage

 		
 Yardstick common CLI

 		
 Run Yardstick in a local environment

 		
 Create a new testcase for Yardstick

 		
 Create a test suite for Yardstick

 		
 References

 		
 Installing a plug-in into Yardstick

 		
 Abstract

 		
 Installing Storperf into Yardstick

 		
 Store Other Project’s Test Results in InfluxDB

 		
 Abstract

 		
 Store Storperf Test Results into Community’s InfluxDB

 		
 Grafana dashboard

 		
 Abstract

 		
 Public access

 		
 Testcase dashboard

 		
 Administration access

 		
 Add a dashboard into Yardstick Grafana

 		
 Yardstick Restful API

 		
 Abstract

 		
 Available API

 		
 Yardstick User Interface

 		
 Commands

 		
 Description

 		
 Network Services Benchmarking (NSB)

 		
 Abstract

 		
 Overview

 		
 Architecture

 		
 Graphical Overview

 		
 NSB Installation

 		
 Abstract

 		
 Prerequisites

 		
 Install Yardstick (NSB Testing)

 		
 System Topology

 		
 Environment parameters and credentials

 		
 Run Yardstick - Network Service Testcases

 		
 Network Service Benchmarking - Bare-Metal

 		
 Standalone Virtualization

 		
 OpenStack with SR-IOV support

 		
 Enabling other Traffic generators

 		
 Spirent Landslide

 		
 Yardstick - NSB Testing - Operation

 		
 Abstract

 		
 OpenStack Network Configuration

 		
 Collectd KPIs

 		
 Scale-Up

 		
 Scale-Out

 		
 Traffic Generator tuning

 		
 Standalone configuration

 		
 Preparing test run of vEPC test case

 		
 Update Spirent Landslide TG configuration in pod file

 		
 Update NSB test case definitions

 		
 Preparing test run of vPE test case

 		
 Preparing test run of vIPSEC test case

 		
 Preparing test run of vCMTS test case

 		
 Yardstick Test Cases

 		
 Abstract

 		
 Generic NFVI Test Case Descriptions

 		
 OPNFV Feature Test Cases

 		
 Templates

 		
 NSB Sample Test Cases

 		
 Abstract

 		
 NSB PROX Test Case Descriptions

 		
 Glossary

 		
 References

 		
 OPNFV

 		
 References used in Test Cases

 		
 Research

 		
 Standards

 		
 Yardstick Developer Guide

 		
 Introduction

 		
 Where can I find some help to start?

 		
 Yardstick developer areas

 		
 Yardstick framework

 		
 How Todos?

 		
 How Yardstick works?

 		
 How to work with test cases?

 		
 How can I contribute to Yardstick?

 		
 Backporting changes to stable branches

 		
 Development guidelines

 		
 Coding style

 		
 Running tests

 		
 Writing unit tests

 		
 Plugins

 		
 Introduction

 		
 Prerequisites

 		
 Sample Prox Test Hardware Architecture

 		
 Prox Test Architecture

 		
 NSB Prox Test

 		
 Test Description File

 		
 Test Description File for Baremetal

 		
 Traffic Profile File

 		
 Test Description File for Openstack

 		
 Test Description File for Standalone

 		
 Traffic Generator Config file

 		
 SUT Config File

 		
 Baremetal Configuration File

 		
 Grafana Dashboard

 		
 How to run NSB Prox Test on an baremetal environment

 		
 How to run NSB Prox Test on an Openstack environment

 		
 Frequently Asked Questions

 		
 NSB Prox does not work on Baremetal, How do I resolve this?

 		
 How do I debug NSB Prox on Baremetal?

 		
 NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

 		
 How do I debug NSB Prox on Openstack?

 		
 How do I resolve “Quota exceeded for resources”

 		
 Openstack CLI fails or hangs. How do I resolve this?

 		
 How to Understand the Grafana output?

_images/PROX_Test_HEAT_Script1.png
schema: "yardstick:task:0.1"

scenarios:

type: NsPerf

traffic_profil

../../traffic_profiles/prox_binsearch.yanl «ggmm 1

topology: prox-tg-topology-4.yaml «3=m 2

nodes:

tg_0: tg_0.yardstick -e3mm 3
vnf_0: vnf_0.yardstick

options:

interface_speed_gbp:

10 =24

vn
prox_path: /opt/nsb_bin/prox eg£3==m 5
prox_config: "configs/handle_l2fwd-4.cfg" 3= 6

Prox args: emamm

tg_0:
prox_path: /opt/nsb bin/prox = edi=mg
Pprox_config: "configs/gen_l2fwd-4.cfg"
prox_args

type: Proxburation e=mQ

sampling interval

interval: 1

sampled : yes OR sampled: no (DEFAULT yes)

sampled: yes

ve kill after duration, independent of test duration, so set this high
duration: 3100

Confirmation attempts

confirmation: 1

_images/PROX_Test_HEAT_Script2.png
context
name: yardstick
image: yardstick-samplevnfs «Gamy A
user: ubuntu

extra_specs:
hwicpu_sockets: 1

hwicpu_cores: 10 <G C

bicpu_threads: 1
placenent_groups: .
pgrpl: b

policy: "availability"

servers:
vng_0:

floating_ip: true

Placenent: "porp1” K= E
tg_0:

floating_ip: true

placement: "pgrpl"

netuorks:

g
cidr: '10.0.1.0/24"

uplink 0 <=3 F
cidr: '10.0.2.0/24"
gateway_ip: 'null’
port_security_enabled: False

“false'

cidr: '10.0.3.0/24
gateway ip: 'null’
port_security_enabled: False

See below for more details!

_images/PROX_Software_Arch.png
Traffic
Generator System Under

bt

_images/PROX_Test_BM_Script.png
scenarios:

type: NsPerf
traffic_profile: ../../traffic profiles/prox binsearch.yanl gy]
topology: prox-tg-topology-4.yanl G 2

g 0.yardstick gmey 3

vnf_o: vnf_0.yardstick

options:

interface_speed_gbps: 10 S [

nf_e:

collectd: =5

interval: 1
prox_path: /opt/nsb_bin/prox] 6
prox_config: “configs/handle_12fud-4.c19" wguimmy 7

o -3 8

tg_o:
collectd:
interval: 1

prox_path: /opt/nsb_bin/prox
prox_config: "configs/gen_l2fud-4.cfq" el 9

type: Proxduration ey ()

sampling interval
interval: 1

sampled : yes OR sampled: no (DEFAULT yes)

sampled: yes

we kill after duration, independent of test duration, so set this high
duration: 3100

Confirmation attempts

confirmation: 1

context:
type: Node
name: yardsti<k<= 11
nfvi_type: baremetal
file: prox-baremetal-4.yaml

_images/PROX_Traffic_profile.png
schema: "nsb:traffic_profile:0.1"

- : 1
name: prox_binsearch

description: Binary search for max no-drop throughput over given packet sizes

traffic_profile:
traffic_type: ProxBinSearchProfile = 2
tolerated loss: 0.00] === 3
test precision: 0.1 =em— 4
packet_sizes: [64, 128, 256, 512, 1024, 1280, 1518] === 5
duration: 10 ==Z3=—2 6
lower bound: 0.0 -=-==J=——=7
upper_bound: 100.0 - —3

_images/PROX_Yardstick_config.png
[DEFAULT]

debug = False

setup multiple dipatcher with c deperted e.g. file,http
dispatcher = influxdb % 1

[dispatcher_http]
timeout = 5
target = http://127.0.0.1:8000/results

[dispatcher_file]

file path = /tmp/yardstick.out
max_bytes = 8

backup_count = 0

[dispatcher_influxdb]
tineout - 5 </
target = http://10.237.222.55:8086

db_name = yardstick
username = root
password = password

[nsb]

trex_path=/opt/nsb_bin/trex/scripts
bin_path=/opt/nsb_bin
trex_client_lib=/opt/nsb_bin/trex client/stl

_images/PROX_Test_ovs_dpdk_Script_1.png
schema: “yardstick:task:0.1"

scenarios:

type: NsPerf
traffic_profile: ../../traffic_profiles/orox binsearch.yanl wtm 1
topology: prox-tg-topology-2.yaml —gi=y 2

nodes :

tg_o: tg 0.yardstick ey
vnf_o: vnf_0.yardstick 3

options:
interface_speed_gbp:

1 <=4
nf_o:
prox_path: /opt/nsb_bin/prox <=3 D
ig: "configs/handle 121wd-2.cfy" a6
<=7

tg_o:
prox_path: /opt/nsb_bin/prox
ig: “configs/gen_12fwd-2.cfg" <=2 8

runner:
type: Duration gt 9
#we kill after auration, independent of test duration, so set this high
duration: 360

_images/PROX_Test_ovs_dpdk_Script_2.png
contexts:
- name: yardstick
type: Node
file: prox_tg_bn.yanl <=3 A
- name: yardstick
type: StandaloneOvsDpdk <=3

file: /etc/yardstick/nodes/standalone/host ovs.yanl ey

vm_deploy: True o=y D
ovs_properties: <=E

version

2.8.0
:17.05.2
pnd_threads: 2
ram:
socket_6: 2048
socket_1: 2048
a

usr/local”

ram: 16384
extra_specs:

servers:
nf_o:
network_ports:

mgn
cidr: 1172.20.2.7/20 3@ G
xe0:

Cuplink e <= H
xel:
- downlink_o
networks: <= 1
uplink_
port_num:
phy_port

*152.16.100.10/24"
gateway_ip: '152.16.100.20"
downlink_8
port_num: 1
phy_port

gateway_ip: '152.16.100.20"

C

"/var/ 11/ Libvirt/inages/yardstick-nsb-image. ing"

_images/TC002.png
Dashboard selection

Time period selection

Test case

Visualized results

Performance statistics

_images/Use_case.png
Vardstick

Run a SingleTest
Case

Dispatcher

test result

Run Test Case
Suite

Query Secenarios or
Runners

Plot with test result

Check ms%

Cpck test Tesult
Check test result —>

Check test result

User \

OPNFV Testing
Dashboard

MongoDB

_images/Yardstick_framework_architecture_in_D.png
User Interface

3rd 0SS

CLI Web GUI
API
Framework v
Core
Y s v N ~ —4
5 7 o Container
Context Scenario Runner Dispatcher Plugin
Manager
Service
A4 v v v A4 v
Heat Compute Arithmetic File StorPerf InfluxDB
Node Storage Duration Http VSperf Grafana
Dummy Network Iteration InfluxDB
Baremetal Feature Sequence
Standalone HA

_images/results_visualization.png
L

POD: ericsson-pod2 + huawei-pod1 + huawei-pod2 + intel-pod6 + If-pod2 + zte-pod1 ~ SCENARIO: Al

&= Yardstick-TC074 . w e

& Zzoomout @Last7days Refreshevery 30m &

OPNFV_Yardstick_TC074 - Storage Performance Benchmarking for NFVI (Storperf)

Measure block and object storage performance in an NFVI. For more information see TC074

I | 4 Block and object storage performance ©Last 14 days

075
050

025

72100:00 722 00:00 723 00:00 724 00:00 7125 00:00 7126 00:00 727 00:00 728 00:00 729 00:00 7130 00:00 7131 00:00 8/100:00 8200:00 83 00:00

_images/tc002_pod.png
pod_name

W

zpod-ameny
zpody

Tpody
zpoday
Zipodameny
spod-pul
Elenuin-uossoLE
Tpod-uossae
spod-ue
vienun-meny
elemunomeny
gTpod-pIu)
sienuin-meny
2iemunameny
gpod-we
slenuin-ameny
Tlenun-ameny
Zenuin-uossoe
lenyn-uossoLE
TlenuIn-uossILE

_images/add.png
1. Builda
local Influxdb
and grafana

2. Fetch and
import dashboard
config fle from
Yardstick repo

3. Run test case

and push results
to Influxdb

6. Yardstick
review and
merge to repo

5. Export config
file and propose
into Yardstick

4. Modify an
existing dashboarg
or create a new

_images/login.png
Grafana

User ‘email or username

Password password

Forgot your password?

‘Grafana version: 2.6.0, commit: v2.6.0, build date: 2015-12-14 22:18:01

_images/tc002_scenario_fraser.png
| ev-udndbq-po-so

@ evouosdies-upsouso
b eusno-upsou-so

|- ey-aimeajou-g[jpo-so

b euassiposo

b evwntupsouso

o |- eu-eq-upsou-so
[eyou-sao-upsou-so

[eyou-sipo-so
eyYOU-3IME3J0U-UpSOU-SO
- ey-aimeajou-upsou-so

deploy_scena
T

| evouaimesou-gipo-so
I evou-teq-upsou-so

EYOU-WAY-UpsOU-SO
|- ey-aimeajou-po-so

|- evou-aimeajou-ipo-so
L ey-uosequado-upsou-so

2500
2000 -
1500 -
1000

500 -

W

_images/tc010_pod.png
pod_name

Tpod-uossae
zpodaay
TenuIn-uossILR
gTpod-pIu;
spod-pul
lenuIn-uossoLD
Zenuin-uossae
zpod-ameny
Z1podameny
Elenun-uossaLE
vienunameny
€lemunomeny
Tlenun-meny
6lenuinameny
Ziemunameny
Tpody

zpody
spod-ue
sienuinomeny
gpod-we

_images/tc002_pod_fraser.png
pod_name

zpod-ameny
Tpody
Tpod-uossae
Z1podameny
zpody

zpodanz
lenun-uossoLE
vienuinameny
spod-ue
elenunameny
gTpod-pIu)
Zenunameny
Tlenun-ameny
gpod-wie
Elenuin-uossae
Zenuin-uossae

_images/tc002_scenario.png
y_scenario

deplo

30 -

20

W

ey-uoow-Z[|po-s0
e-sho-upsouso
eyou-ypdp SAo-upsou-so
ey-3pdp SAo-upsou-so
eoU-1eq-Upsou-so
ey-udadbaposo
£YOUBIMEBJOU-UNG-50
ey-21njeajou-£[|po-s0
eyouSho-upsou-s0
eleq-upsou-so
)
eyou-px-upsou-so
eY-21Me30U-Upsou-50
BUYOU-UOOW-Z [Po-S0.
eu-px-upsouso
eYOU-BIMEBJ0U-E[[p0-50
ey-2unje340U-{p0-50
eyou-2j5{po-s0
eUoU-WL-UPSOU-S0
e-uojequade-upsou-so
£YOU-IMEBJOU-UpSOU-50
eU-wnLUpsOU-so
ey40U-2IMEBJ0U-PO-50

_images/tc010_scenario.png
y_scenario

deplo

2 8§ R’ 8

Kousegzsanusiel

eyousno-upsouso
eyou-3pdp sAo-upsou-so
ey-3pdp sno-upsou-so
e-uoiequade-upsou-so
ey-uoow-z| |po-s0
ey-a1njeajou-£[|po-so
ey-2imesjou-upsou-so
eyoU-IMEBJOU-UpSOU-50
BYOU-U0OW-Z[[Po-S0
eyou-aINeajoU-£[[po-s0
eyoU-2IMEBJ0U-PO-50
eyou-2jsposo
ey-aysiposo
eyoU-wL-UpSOU-S0
ey-wmrupsou-so
el1eq-upsou-so
eysno-upsouso
eyoU-BIMEBJ0U-UNG-50
ey-2inea0u-1po-s0
eyou-1eq-upsou-so

_images/tc010_scenario_fraser.png
y_scenario

deplo

(=]
oo apmt-{S]
oap i 2 [
By
ococrmant]
-

2 8 8 & =

Kousergzsanusiel

eu-uorequado-upsou-so
eyaimeajou-1po-so
eyysiposo
eyaimeajou-upsou-so
euou-djsposo
ey2umesjou-
eyou-aINeajou-£[[po-so
eyoU-BINEB0U-UpSOU-SO

0-s0

ey-wmtupsou-so
eyousno-upsou-so
eyou-wmt-upsou-so
eyou-1eq-upsou-so
eueq-upsou-so
eyou-2inEs0upo-50
eyou-osdiie>-upsou-so
eysno-upsouso
eyou-aineajou-unc-so

_images/tc010_pod_fraser.png
pod_name

Kousergzsanusiel

Tpod-uossae
gTpod-pIu)
zpodanz
zpod-ameny
Z1podameny
Zenuin-uossae
Zenunmeny
lenun-uossoLE
Elenuin-uossae
elenunameny
vienuinameny
zpody

Tpody
spod-ue
Tlenuinmeny
gpod-wie

_images/tc011_scenario.png
eyou-ipdp™sno-upsou-so
eyou-aINeajou-£[[po-so
eUoU-WAY-UpsOUS0
euafpdpTsno-upsou-so
ey-wmrupsou-so

eyoU-2j5-po-so

ey-uojequado-upsou-so
eyou-aIMEBjoU-UpSOU-50
eyou-BIMEBj0U-UNG-50
ey-2umesjou-¢po-s0
eyou-uoow-zpo-s0
ey-uoow-Z[|po-s0

ey po-so
eyaInjea0U|po-50
eyBINeajoU-UPSOU-SO
eyoU-IEG-upsou-so
eyeq-upsou-so

030 -|
025 -|
1020 -|

15 4
1005 -|
1000 -|
995 |

_images/tc011_scenario_fraser.png
y_scenario

deplo

eYOU-31MEBJOU-URC-5O
EYOU-WAY-UpSOU-SO
ey po-so

eyou-2ineaj0u-£[1p0-50

ey-2umesjou-¢po-s0
ey-uojequado-upsou-so
eyou-aIMEBjoU-UpSOU-50
ey-2imesjou-upsou-so
ey-w-upsOU-S0
eyou-osdje-upsou-so
eyou-Ieq-upsou-s0
ey-1eq-upsou-so

eyoU-2j5-po-so

_images/tc011_pod.png
pod_name

3030

oo ol
00 o 0000 |-
ol

3005
3000
995

Zenunmeny
zpoday
elenuinameny
slenuinameny
sienuin-ameny
vienun-ameny
Elenun-uossoLE
Tlenun-ameny
Zenuin-uossoe
Tpodoru
lenun-uossoLe
zpody)

Tpody
spod-au
zpod-ameny
Z1podameny
Tpod-uossae
gpod-wie
spod-ue

_images/tc011_pod_fraser.png
pod_name

Ww*n[wm

3000
500

)

|- zpody|
L elenuin-uossous
Zenuin-uossae

L tpod-uossoua

26 e <3~ B 32
T

[gpod-wse
[tienunomeny
[eienunomeny
[vienunsomeny
|- zpodorz

o - Tpody

stpod-pur

zpod-ameny

Z1podameny

Zenuinemeny

500

yoedBunspus.

00

_images/tc012_scenario.png
deploy_scenario

5000
0000 -

“sdg yIpIMpUeq

5000 |

ey-wmtupsou-so
eyou-wNL-UpSOU-S0
e-uojequado-upsou-so
eyou-2jsposo
eyou-aINeajou-£[[po-s0
BYOU-U0OW-Z[[Po-S0.
eyou-ypdp SAo-upsou-so
ey-3pdp SAo-upsou-so
ey-2ysiposo
ey-21njeajou-£[|po-s0
ey-uoow-z| |po-s0
eueq-upsou-so
ey-21Me30U-Upsou-s0
eyoU-IMEBJOU-UpSOU-50
eyousno-upsouso
eyoU-2IMEBJ0U-PO-50
ey-21ea0u-1po-50
esno-upsouso
eyou-1eq-upsou-so
eY4OU-BIMEBJOU-UNG-50

_images/tc012_pod.png
pod_name

“sdgn yIpIMpUeq

5000

gpod-wie
spod-ue
sienuin-ameny
slenuin-ameny
spod-pul
2iemunameny
gTpod-pIu)
Z1pod-ameny
Elenunameny
Tlenun-ameny
vienuin-ameny
zpod-ameny
Elenun-uossoLE
Zenuin-uossoe
lenuin-uossoLe
Tpod-uossae
TlenuIn-uossILD
zpoday
zpody)

Tpody

_images/tc012_pod_fraser.png
pod_name

- gpod-wse

I spoduse

4 [elenun-uossaue

] [tienunomeny
o [ziemunsomeny

[[b vienunomeny
- o | eenumemeny
1 L ztpodemeny
e i ffTamoo o L zpodaz
" L zpodsemeny

Zenuin-uossae
lenun-uossoLE
gTpod-pIu)
Tpod-uossae
zpody

Tpody

5000

“sdg yIpimpueq

