
Yardstick
Release Latest

Open Platform for NFV

Feb 04, 2020

CONTENTS

1 Yardstick Release Note 1
1.1 Yardstick Release Notes . 1

2 Yardstick User Guide 7
2.1 Introduction . 7
2.2 Methodology . 8
2.3 Architecture . 11
2.4 Yardstick Installation . 17
2.5 Yardstick Usage . 30
2.6 Installing a plug-in into Yardstick . 36
2.7 Store Other Project’s Test Results in InfluxDB . 38
2.8 Grafana dashboard . 40
2.9 Yardstick Restful API . 42
2.10 Yardstick User Interface . 53
2.11 Network Services Benchmarking (NSB) . 54
2.12 NSB Installation . 57
2.13 Yardstick - NSB Testing - Operation . 88
2.14 Update Spirent Landslide TG configuration in pod file . 101
2.15 Update NSB test case definitions . 103
2.16 Yardstick Test Cases . 105
2.17 NSB Sample Test Cases . 201
2.18 Glossary . 244
2.19 References . 245

3 Yardstick Developer Guide 247
3.1 Introduction . 247
3.2 Yardstick developer areas . 247
3.3 How Todos? . 248
3.4 Backporting changes to stable branches . 255
3.5 Development guidelines . 256
3.6 Plugins . 258
3.7 Introduction . 258
3.8 Prerequisites . 259
3.9 Sample Prox Test Hardware Architecture . 259
3.10 Prox Test Architecture . 260
3.11 NSB Prox Test . 263
3.12 How to run NSB Prox Test on an baremetal environment . 285
3.13 How to run NSB Prox Test on an Openstack environment . 285
3.14 Frequently Asked Questions . 286

i

Index 295

ii

CHAPTER

ONE

YARDSTICK RELEASE NOTE

The Yardstick framework, the Yardstick test cases are open-source software, licensed under the terms of the
Apache License, Version 2.0.

1.1 Yardstick Release Notes

1.1.1 Abstract

This document compiles the release notes for the Iruya release of OPNFV Yardstick.

1.1.2 Version History

Date Version Comment
Jan 10, 2020 9.0.0 Yardstick for Iruya release

1.1.3 Important Notes

The software delivered in the OPNFV Yardstick Project, comprising the Yardstick framework, and the Yardstick test
cases is a realization of the methodology in ETSI-ISG NFV-TST001.

The Yardstick framework is installer, infrastructure and application independent.

1.1.4 OPNFV Iruya Release

This Iruya release provides Yardstick as a framework for NFVI testing and OPNFV feature testing, automated in the
OPNFV CI pipeline, including:

• Documentation generated with Sphinx

– User Guide

– Developer Guide

– Release notes (this document)

– Results

• Automated Yardstick test suite (daily, weekly)

– Jenkins Jobs for OPNFV community labs

1

https://wiki.opnfv.org/display/yardstick
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf

Yardstick, Release Latest

• Automated Yardstick test results visualization

– Dashboard using Grafana (user:opnfv/password: opnfv), influxDB is used as backend

• Yardstick framework source code

• Yardstick test cases yaml files

• Yardstick plug-in configuration yaml files, plug-in install/remove scripts

For Iruya release, the Yardstick framework is used for the following testing:

• OPNFV platform testing - generic test cases to measure the categories:

– Compute

– Network

– Storage

• OPNFV platform network service benchmarking (NSB)

– NSB

• Test cases for the following OPNFV Projects:

– Container4NFV

– High Availability

– IPv6

– KVM

– Parser

– StorPerf

– VSperf

The Yardstick framework is developed in the OPNFV community, by the Yardstick team.

Note: The test case description template used for the Yardstick test cases is based on the document ETSI-ISG NFV-
TST001; the results report template used for the Yardstick results is based on the IEEE Std 829-2008.

1.1.5 Release Data

Project Yardstick
Repo/tag yardstick/opnfv-9.0.0
Yardstick Docker image tag opnfv-9.0.0
Release designation Iruya 9.0
Release date Jan 10, 2020
Purpose of the delivery OPNFV Iruya 9.0.0

1.1.6 Deliverables

Documents

• User Guide: <yardstick:userguide>

2 Chapter 1. Yardstick Release Note

http://testresults.opnfv.org/grafana/
https://wiki.opnfv.org/display/yardstick
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf

Yardstick, Release Latest

• Developer Guide: <yardstick:devguide>

Software Deliverables

• The Yardstick Docker image: https://hub.docker.com/r/opnfv/yardstick (tag: opnfv-9.0.0)

List of Contexts

Context Description
Heat Models orchestration using OpenStack Heat
Node Models Baremetal, Controller, Compute
Standalone Models VM running on Non-Managed NFVi
Kubernetes Models VM running on Non-Managed NFVi

List of Runners

Runner Description
Arithmetic Steps every run arithmetically according to specified input value
Duration Runs for a specified period of time
Iteration Runs for a specified number of iterations
IterationIPC Runs a configurable number of times before it returns. Each iteration has a configurable timeout.
Sequence Selects input value to a scenario from an input file and runs all entries sequentially
Dynamictp A runner that searches for the max throughput with binary search
Search A runner that runs a specific time before it returns

1.1. Yardstick Release Notes 3

https://hub.docker.com/r/opnfv/yardstick

Yardstick, Release Latest

List of Scenarios

Category Delivered
Availability Attacker:

• baremetal, process
HA tools:

• check host, openstack, process, service
• kill process
• start/stop service

Monitor:
• command, process

Compute
• cpuload
• cyclictest
• lmbench
• lmbench_cache
• perf
• unixbench
• ramspeed
• cachestat
• memeoryload
• computecapacity
• SpecCPU2006

Networking
• iperf3
• netperf
• netperf_node
• ping
• ping6
• pktgen
• sfc
• sfc with tacker
• networkcapacity
• netutilization
• nstat
• pktgenDPDK

Parser Tosca2Heat
Storage

• fio
• bonnie++
• storagecapacity

StorPerf storperf
NSB vFW thoughput test case

New Test cases

opnfv_yardstick_tc015: Processing speed with impact on energy consumption and CPU load.

The purpose of TC015 is to evaluate the IaaS compute performance with regards to CPU processing speed with its

4 Chapter 1. Yardstick Release Note

Yardstick, Release Latest

impact on the energy consumption. It measures score of single cpu running and parallel running. Energy consumption
and cpu load are monitored while the cpu test is running. The purpose is also to be able to spot the trends. Test results,
graphs and similar shall be stored for comparison reasons and product evolution understanding between different
OPNFV versions and/or configurations, different server types.

1.1.7 Version Change

Module Version Changes

This is the seventh tracked release of Yardstick. It is based on following upstream versions:

• OpenStack Stein

Document Version Changes

This is the seventh tracked version of the Yardstick framework in OPNFV. It includes the following documentation
updates:

• Yardstick User Guide:

• Yardstick Developer Guide

• Yardstick Release Notes for Yardstick: this document

Feature additions

1.1.8 Scenario Matrix

1.1.9 Test results

Test results are available in:

• jenkins logs on CI: https://build.opnfv.org/ci/view/yardstick/

Known Issues/Faults

Corrected Faults

1.1.10 Iruya 9.0.0 known restrictions/issues

1.1.11 Useful links

• wiki project page: https://wiki.opnfv.org/display/yardstick/Yardstick

• wiki Yardstick Iruya release planning page: https://wiki.opnfv.org/display/yardstick/Release+Iruya

• Yardstick repo: https://git.opnfv.org/yardstick

• Yardstick CI dashboard: https://build.opnfv.org/ci/view/yardstick

• Yardstick grafana dashboard: http://testresults.opnfv.org/grafana/

• Yardstick IRC channel: #opnfv-yardstick

1.1. Yardstick Release Notes 5

https://build.opnfv.org/ci/view/yardstick/
https://wiki.opnfv.org/display/yardstick/Yardstick
https://wiki.opnfv.org/display/yardstick/Release+Iruya
https://git.opnfv.org/yardstick
https://build.opnfv.org/ci/view/yardstick
http://testresults.opnfv.org/grafana/

Yardstick, Release Latest

6 Chapter 1. Yardstick Release Note

CHAPTER

TWO

YARDSTICK USER GUIDE

2.1 Introduction

Welcome to Yardstick’s documentation !

Yardstick is an OPNFV Project.

The project’s goal is to verify infrastructure compliance, from the perspective of a Virtual Network Function (VNF).

The Project’s scope is the development of a test framework, Yardstick, test cases and test stimuli to enable Network
Function Virtualization Infrastructure (NFVI) verification.

Yardstick is used in OPNFV for verifying the OPNFV infrastructure and some of the OPNFV features. The Yardstick
framework is deployed in several OPNFV community labs. It is installer, infrastructure and application independent.

See also:

Pharos for information on OPNFV community labs and this Presentation for an overview of Yardstick

2.1.1 About This Document

This document consists of the following chapters:

• Chapter Introduction provides a brief introduction to Yardstick project’s background and describes the structure
of this document.

• Chapter Methodology describes the methodology implemented by the Yardstick Project for NFVI verification.

• Chapter Architecture provides information on the software architecture of Yardstick.

• Chapter Yardstick Installation provides instructions to install Yardstick.

• Chapter Yardstick Usage provides information on how to use Yardstick to run and create testcases.

• Chapter Installing a plug-in into Yardstick provides information on how to integrate other OPNFV testing
projects into Yardstick.

• Chapter Store Other Project’s Test Results in InfluxDB provides inforamtion on how to run plug-in test cases
and store test results into community’s InfluxDB.

• Chapter Grafana dashboard provides inforamtion on Yardstick grafana dashboard and how to add a dashboard
into Yardstick grafana dashboard.

• Chapter Yardstick Restful API provides inforamtion on Yardstick ReST API and how to use Yardstick API.

• Chapter Yardstick User Interface provides inforamtion on how to use yardstick report CLI to view the test result
in table format and also values pinned on to a graph

7

https://wiki.opnfv.org/display/yardstick
https://wiki.opnfv.org/display/pharos
https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_yardstick_project.pdf?version=1&modificationDate=1458848320000&api=v2

Yardstick, Release Latest

• Chapter Network Services Benchmarking (NSB) describes the methodology implemented by the Yardstick -
Network service benchmarking to test real world usecase for a given VNF.

• Chapter NSB Installation provides instructions to install Yardstick - Network Service Benchmarking (NSB) test-
ing.

• Chapter Yardstick - NSB Testing - Operation provides information on running NSB

• Chapter Yardstick Test Cases includes a list of available Yardstick test cases.

2.1.2 Contact Yardstick

Feedback? Contact us

2.2 Methodology

2.2.1 Abstract

This chapter describes the methodology implemented by the Yardstick project for verifying the NFVI from the per-
spective of a VNF.

2.2.2 ETSI-NFV

The document ETSI GS NFV-TST001, “Pre-deployment Testing; Report on Validation of NFV Environments and
Services”, recommends methods for pre-deployment testing of the functional components of an NFV environment.

The Yardstick project implements the methodology described in chapter 6, “Pre- deployment validation of NFV in-
frastructure”.

The methodology consists in decomposing the typical VNF work-load performance metrics into a number of charac-
teristics/performance vectors, which each can be represented by distinct test-cases.

The methodology includes five steps:

• Step1: Define Infrastruture - the Hardware, Software and corresponding configuration target for valida-
tion; the OPNFV infrastructure, in OPNFV community labs.

• Step2: Identify VNF type - the application for which the infrastructure is to be validated, and its require-
ments on the underlying infrastructure.

• Step3: Select test cases - depending on the workload that represents the application for which the infras-
truture is to be validated, the relevant test cases amongst the list of available Yardstick test cases.

• Step4: Execute tests - define the duration and number of iterations for the selected test cases, tests runs
are automated via OPNFV Jenkins Jobs.

• Step5: Collect results - using the common API for result collection.

See also:

Yardsticktst for material on alignment ETSI TST001 and Yardstick.

8 Chapter 2. Yardstick User Guide

mailto:opnfv-users@lists.opnfv.org&subject="#yardstick"
http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://wiki.opnfv.org/download/attachments/2925202/opnfv_summit_-_bridging_opnfv_and_etsi.pdf?version=1&modificationDate=1458848320000&api=v2

Yardstick, Release Latest

2.2.3 Metrics

The metrics, as defined by ETSI GS NFV-TST001, are shown in Table1, Table2 and Table3.

In OPNFV Colorado release, generic test cases covering aspects of the listed metrics are available; further OPNFV
releases will provide extended testing of these metrics. The view of available Yardstick test cases cross ETSI defini-
tions in Table1, Table2 and Table3 is shown in Table4. It shall be noticed that the Yardstick test cases are examples,
the test duration and number of iterations are configurable, as are the System Under Test (SUT) and the attributes (or,
in Yardstick nomemclature, the scenario options).

Table 1 - Performance/Speed Metrics

Category Performance/Speed
Compute

• Latency for random memory access
• Latency for cache read/write operations
• Processing speed (instructions per second)
• Throughput for random memory access (bytes per

second)

Network
• Throughput per NFVI node (frames/byte per sec-

ond)
• Throughput provided to a VM (frames/byte per

second)
• Latency per traffic flow
• Latency between VMs
• Latency between NFVI nodes
• Packet delay variation (jitter) between VMs
• Packet delay variation (jitter) between NFVI

nodes

Storage • Sequential read/write IOPS
• Random read/write IOPS
• Latency for storage read/write operations
• Throughput for storage read/write operations
• Energy consumption in Watts (transversal to all

others scenario)

Energy

Table 2 - Capacity/Scale Metrics

2.2. Methodology 9

Yardstick, Release Latest

Category Capacity/Scale
Compute

• Number of cores and threads- Available memory
size

• Cache size
• Processor utilization (max, average, standard de-

viation)
• Memory utilization (max, average, standard devi-

ation)
• Cache utilization (max, average, standard devia-

tion)

Network
• Number of connections
• Number of frames sent/received
• Maximum throughput between VMs (frames/byte

per second)
• Maximum throughput between NFVI nodes

(frames/byte per second)
• Network utilization (max, average, standard devi-

ation)
• Number of traffic flows

Storage
• Storage/Disk size
• Capacity allocation (block-based, object-based)
• Block size
• Maximum sequential read/write IOPS
• Maximum random read/write IOPS
• Disk utilization (max, average, standard devia-

tion)

Table 3 - Availability/Reliability Metrics

10 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Category Availability/Reliability
Compute

• Processor availability (Error free processing time)
• Memory availability (Error free memory time)
• Processor mean-time-to-failure
• Memory mean-time-to-failure
• Number of processing faults per second

Network
• NIC availability (Error free connection time)
• Link availability (Error free transmission time)
• NIC mean-time-to-failure
• Network timeout duration due to link failure
• Frame loss rate

Storage
• Disk availability (Error free disk access time)
• Disk mean-time-to-failure
• Number of failed storage read/write operations

per second

Table 4 - Yardstick Generic Test Cases

Cate-
gory

Performance/Speed Capacity/Scale Availabil-
ity/Reliability

Com-
pute

TC0031 TC004 TC010 TC012 TC014 TC015
TC069

TC0031 TC004 TC024
TC055

TC0131 TC0151

Net-
work

TC001 TC002 TC009 TC011 TC042 TC043 TC044 TC073 TC075 TC0161 TC0181

Storage TC005 TC063 TC0171

Note: The description in this OPNFV document is intended as a reference for users to understand the scope of the
Yardstick Project and the deliverables of the Yardstick framework. For complete description of the methodology,
please refer to the ETSI document.

2.3 Architecture

2.3.1 Abstract

This chapter describes the Yardstick framework software architecture. We will introduce it from Use Case View,
Logical View, Process View and Deployment View. More technical details will be introduced in this chapter.

2.3.2 Overview

1 To be included in future deliveries.

2.3. Architecture 11

Yardstick, Release Latest

Architecture overview

Yardstick is mainly written in Python, and test configurations are made in YAML. Documentation is written in re-
StructuredText format, i.e. .rst files. Yardstick is inspired by Rally. Yardstick is intended to run on a computer with
access and credentials to a cloud. The test case is described in a configuration file given as an argument.

How it works: the benchmark task configuration file is parsed and converted into an internal model. The context part
of the model is converted into a Heat template and deployed into a stack. Each scenario is run using a runner, either
serially or in parallel. Each runner runs in its own subprocess executing commands in a VM using SSH. The output
of each scenario is written as json records to a file or influxdb or http server, we use influxdb as the backend, the test
result will be shown with grafana.

Concept

Benchmark - assess the relative performance of something

Benchmark configuration file - describes a single test case in yaml format

Context - The set of Cloud resources used by a scenario, such as user names, image names, affinity rules and network
configurations. A context is converted into a simplified Heat template, which is used to deploy onto the Openstack
environment.

Data - Output produced by running a benchmark, written to a file in json format

Runner - Logic that determines how a test scenario is run and reported, for example the number of test iterations,
input value stepping and test duration. Predefined runner types exist for re-usage, see Runner types.

Scenario - Type/class of measurement for example Ping, Pktgen, (Iperf, LmBench, . . .)

SLA - Relates to what result boundary a test case must meet to pass. For example a latency limit, amount or ratio of
lost packets and so on. Action based on SLA can be configured, either just to log (monitor) or to stop further testing
(assert). The SLA criteria is set in the benchmark configuration file and evaluated by the runner.

Runner types

There exists several predefined runner types to choose between when designing a test scenario:

Arithmetic: Every test run arithmetically steps the specified input value(s) in the test scenario, adding a value to the
previous input value. It is also possible to combine several input values for the same test case in different combinations.

Snippet of an Arithmetic runner configuration:

runner:
type: Arithmetic
iterators:
-

name: stride
start: 64
stop: 128
step: 64

Duration: The test runs for a specific period of time before completed.

Snippet of a Duration runner configuration:

runner:
type: Duration
duration: 30

12 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Sequence: The test changes a specified input value to the scenario. The input values to the sequence are specified in
a list in the benchmark configuration file.

Snippet of a Sequence runner configuration:

runner:
type: Sequence
scenario_option_name: packetsize
sequence:
- 100
- 200
- 250

Iteration: Tests are run a specified number of times before completed.

Snippet of an Iteration runner configuration:

runner:
type: Iteration
iterations: 2

2.3.3 Use-Case View

Yardstick Use-Case View shows two kinds of users. One is the Tester who will do testing in cloud, the other is the
User who is more concerned with test result and result analyses.

For testers, they will run a single test case or test case suite to verify infrastructure compliance or bencnmark their own
infrastructure performance. Test result will be stored by dispatcher module, three kinds of store method (file, influxdb
and http) can be configured. The detail information of scenarios and runners can be queried with CLI by testers.

For users, they would check test result with four ways.

If dispatcher module is configured as file(default), there are two ways to check test result. One is to get result from
yardstick.out (default path: /tmp/yardstick.out), the other is to get plot of test result, it will be shown if users execute
command “yardstick-plot”.

If dispatcher module is configured as influxdb, users will check test result on Grafana which is most commonly used
for visualizing time series data.

If dispatcher module is configured as http, users will check test result on OPNFV testing dashboard which use Mon-
goDB as backend.

2.3. Architecture 13

Yardstick, Release Latest

2.3.4 Logical View

Yardstick Logical View describes the most important classes, their organization, and the most important use-case
realizations.

Main classes:

TaskCommands - “yardstick task” subcommand handler.

HeatContext - Do test yaml file context section model convert to HOT, deploy and undeploy Openstack heat stack.

Runner - Logic that determines how a test scenario is run and reported.

TestScenario - Type/class of measurement for example Ping, Pktgen, (Iperf, LmBench, . . .)

Dispatcher - Choose user defined way to store test results.

TaskCommands is the “yardstick task” subcommand’s main entry. It takes yaml file (e.g. test.yaml) as input, and uses
HeatContext to convert the yaml file’s context section to HOT. After Openstack heat stack is deployed by HeatContext

14 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

with the converted HOT, TaskCommands use Runner to run specified TestScenario. During first runner initialization, it
will create output process. The output process use Dispatcher to push test results. The Runner will also create a process
to execute TestScenario. And there is a multiprocessing queue between each runner process and output process, so
the runner process can push the real-time test results to the storage media. TestScenario is commonly connected with
VMs by using ssh. It sets up VMs and run test measurement scripts through the ssh tunnel. After all TestScenaio is
finished, TaskCommands will undeploy the heat stack. Then the whole test is finished.

2.3.5 Process View (Test execution flow)

Yardstick process view shows how yardstick runs a test case. Below is the sequence graph about the test execution
flow using heat context, and each object represents one module in yardstick:

2.3. Architecture 15

Yardstick, Release Latest

A user wants to do a test with yardstick. He can use the CLI to input the command to start a task. “TaskCommands”
will receive the command and ask “HeatContext” to parse the context. “HeatContext” will then ask “Model” to
convert the model. After the model is generated, “HeatContext” will inform “Openstack” to deploy the heat stack by
heat template. After “Openstack” deploys the stack, “HeatContext” will inform “Runner” to run the specific test case.

Firstly, “Runner” would ask “TestScenario” to process the specific scenario. Then “TestScenario” will start to log
on the openstack by ssh protocal and execute the test case on the specified VMs. After the script execution fin-
ishes, “TestScenario” will send a message to inform “Runner”. When the testing job is done, “Runner” will inform
“Dispatcher” to output the test result via file, influxdb or http. After the result is output, “HeatContext” will call
“Openstack” to undeploy the heat stack. Once the stack is undepoyed, the whole test ends.

2.3.6 Deployment View

Yardstick deployment view shows how the yardstick tool can be deployed into the underlying platform. Generally,
yardstick tool is installed on JumpServer(see 07-installation for detail installation steps), and JumpServer is connected
with other control/compute servers by networking. Based on this deployment, yardstick can run the test cases on these
hosts, and get the test result for better showing.

16 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.3.7 Yardstick Directory structure

yardstick/ - Yardstick main directory.

tests/ci/ - Used for continuous integration of Yardstick at different PODs and with support for different in-
stallers.

docs/ - All documentation is stored here, such as configuration guides, user guides and Yardstick test case de-
scriptions.

etc/ - Used for test cases requiring specific POD configurations.

samples/ - test case samples are stored here, most of all scenario and feature samples are shown in this directory.

tests/ - The test cases run to verify the NFVI (opnfv/) are stored here. The configurations of what to run daily and
weekly at the different PODs are also located here.

tools/ - Contains tools to build image for VMs which are deployed by Heat. Currently contains how to build the
yardstick-image with the different tools that are needed from within the image.

plugin/ - Plug-in configuration files are stored here.

yardstick/ - Contains the internals of Yardstick: Runners, Scenarios, Contexts, CLI parsing, keys, plotting tools,
dispatcher, plugin install/remove scripts and so on.

yardstick/tests - The Yardstick internal tests (functional/ and unit/) are stored here.

2.4 Yardstick Installation

Yardstick supports installation by Docker or directly in Ubuntu. The installation procedure for Docker and direct
installation are detailed in the sections below.

To use Yardstick you should have access to an OpenStack environment, with at least Nova, Neutron, Glance, Keystone
and Heat installed.

The steps needed to run Yardstick are:

2.4. Yardstick Installation 17

Yardstick, Release Latest

1. Install Yardstick.

2. Load OpenStack environment variables.

3. Create Yardstick flavor.

4. Build a guest image and load it into the OpenStack environment.

5. Create the test configuration .yaml file and run the test case/suite.

2.4.1 Prerequisites

The OPNFV deployment is out of the scope of this document and can be found in User Guide & Configuration Guide.
The OPNFV platform is considered as the System Under Test (SUT) in this document.

Several prerequisites are needed for Yardstick:

1. A Jumphost to run Yardstick on

2. A Docker daemon or a virtual environment installed on the Jumphost

3. A public/external network created on the SUT

4. Connectivity from the Jumphost to the SUT public/external network

Note: Jumphost refers to any server which meets the previous requirements. Normally it is the same server from
where the OPNFV deployment has been triggered.

Warning: Connectivity from Jumphost is essential and it is of paramount importance to make sure it is working
before even considering to install and run Yardstick. Make also sure you understand how your networking is
designed to work.

Note: If your Jumphost is operating behind a company http proxy and/or Firewall, please first consult Proxy Support
section which is towards the end of this document. That section details some tips/tricks which may be of help in a
proxified environment.

2.4.2 Install Yardstick using Docker (first option) (recommended)

Yardstick has a Docker image. It is recommended to use this Docker image to run Yardstick test.

Prepare the Yardstick container

Install docker on your guest system with the following command, if not done yet:

wget -qO- https://get.docker.com/ | sh

Pull the Yardstick Docker image (opnfv/yardstick) from the public dockerhub registry under the OPNFV ac-
count in dockerhub, with the following docker command:

sudo -EH docker pull opnfv/yardstick:stable

After pulling the Docker image, check that it is available with the following docker command:

18 Chapter 2. Yardstick User Guide

http://docs.opnfv.org/en/latest/release/userguide.introduction.html
https://hub.docker.com/r/opnfv/yardstick/

Yardstick, Release Latest

[yardsticker@jumphost ~]$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
opnfv/yardstick stable a4501714757a 1 day ago 915.4 MB

Run the Docker image to get a Yardstick container:

docker run -itd --privileged -v /var/run/docker.sock:/var/run/docker.sock \
-p 8888:5000 --name yardstick opnfv/yardstick:stable

Description of the parameters used with docker run command

Parameters Detail
-itd -i: interactive, Keep STDIN open even if not attached

-t: allocate a pseudo-TTY detached mode, in the background
–privileged If you want to build yardstick-image in Yardstick container, this

parameter is needed
-p 8888:5000 Redirect the a host port (8888) to a container port (5000)
-v /var/run/docker.sock
:/var/run/docker.sock

If you want to use yardstick env grafana/influxdb to create a
grafana/influxdb container out of Yardstick container

–name yardstick The name for this container

If the host is restarted

The yardstick container must be started if the host is rebooted:

docker start yardstick

Configure the Yardstick container environment

There are three ways to configure environments for running Yardstick, explained in the following sections. Before
that, access the Yardstick container:

docker exec -it yardstick /bin/bash

and then configure Yardstick environments in the Yardstick container.

Using the CLI command env prepare (first way) (recommended)

In the Yardstick container, the Yardstick repository is located in the /home/opnfv/repos directory. Yardstick pro-
vides a CLI to prepare OpenStack environment variables and create Yardstick flavor and guest images automatically:

yardstick env prepare

Note: Since Euphrates release, the above command will not be able to automatically configure the /etc/
yardstick/openstack.creds file. So before running the above command, it is necessary to create the /
etc/yardstick/openstack.creds file and save OpenStack environment variables into it manually. If you
have the openstack credential file saved outside the Yardstick Docker container, you can do this easily by mapping the
credential file into Yardstick container using:

2.4. Yardstick Installation 19

Yardstick, Release Latest

'-v /path/to/credential_file:/etc/yardstick/openstack.creds'

when running the Yardstick container. For details of the required OpenStack environment variables please refer to
section Export OpenStack environment variables.

The env prepare command may take up to 6-8 minutes to finish building yardstick-image and other environment
preparation. Meanwhile if you wish to monitor the env prepare process, you can enter the Yardstick container in a new
terminal window and execute the following command:

tail -f /var/log/yardstick/uwsgi.log

Manually exporting the env variables and initializing OpenStack (second way)

Export OpenStack environment variables

Before running Yardstick it is necessary to export OpenStack environment variables:

source openrc

Environment variables in the openrc file have to include at least:

OS_AUTH_URL
OS_USERNAME
OS_PASSWORD
OS_PROJECT_NAME
EXTERNAL_NETWORK

A sample openrc file may look like this:

export OS_PASSWORD=console
export OS_PROJECT_NAME=admin
export OS_AUTH_URL=http://172.16.1.222:35357/v2.0
export OS_USERNAME=admin
export OS_VOLUME_API_VERSION=2
export EXTERNAL_NETWORK=net04_ext

Manual creation of Yardstick flavor and guest images

Before executing Yardstick test cases, make sure that Yardstick flavor and guest image are available in OpenStack.
Detailed steps about creating the Yardstick flavor and building the Yardstick guest image can be found below.

Most of the sample test cases in Yardstick are using an OpenStack flavor called yardstick-flavorwhich deviates
from the OpenStack standard m1.tiny flavor by the disk size; instead of 1GB it has 3GB. Other parameters are the
same as in m1.tiny.

Create yardstick-flavor:

openstack flavor create --disk 3 --vcpus 1 --ram 512 --swap 100 \
yardstick-flavor

Most of the sample test cases in Yardstick are using a guest image called yardstick-image which deviates from
an Ubuntu Cloud Server image containing all the required tools to run test cases supported by Yardstick. Yardstick has
a tool for building this custom image. It is necessary to have sudo rights to use this tool.

20 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Also you may need install several additional packages to use this tool, by follwing the commands below:

sudo -EH apt-get update && sudo -EH apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where Yardstick is installed:

export YARD_IMG_ARCH='amd64'
echo "Defaults env_keep += \'YARD_IMG_ARCH\'" | sudo tee --append \

/etc/sudoers > /dev/null
sudo -EH tools/yardstick-img-modify tools/ubuntu-server-cloudimg-modify.sh

Warning: Before building the guest image inside the Yardstick container, make sure the container is granted with
privilege. The script will create files by default in /tmp/workspace/yardstick and the files will be owned
by root.

The created image can be added to OpenStack using the OpenStack client or via the OpenStack Dashboard:

openstack image create --disk-format qcow2 --container-format bare \
--public --file /tmp/workspace/yardstick/yardstick-image.img \
yardstick-image

Some Yardstick test cases use a Cirros 0.3.5 image and/or a Ubuntu 16.04 image. Add Cirros and Ubuntu images to
OpenStack:

openstack image create --disk-format qcow2 --container-format bare \
--public --file $cirros_image_file cirros-0.3.5

openstack image create --disk-format qcow2 --container-format bare \
--file $ubuntu_image_file Ubuntu-16.04

Automatic initialization of OpenStack (third way)

Similar to the second way, the first step is also to Export OpenStack environment variables. Then the following steps
should be done.

Automatic creation of Yardstick flavor and guest images

Yardstick has a script for automatically creating Yardstick flavor and building Yardstick guest images. This script is
mainly used for CI and can be also used in the local environment:

source $YARDSTICK_REPO_DIR/tests/ci/load_images.sh

The Yardstick container GUI

In Euphrates release, Yardstick implemented a GUI for Yardstick Docker container. After booting up Yardstick con-
tainer, you can visit the GUI at <container_host_ip>:8888/gui/index.html.

For usage of Yardstick GUI, please watch our demo video at Yardstick GUI demo.

Note: The Yardstick GUI is still in development, the GUI layout and features may change.

2.4. Yardstick Installation 21

http://download.cirros-cloud.net/0.3.5/cirros-0.3.5-x86_64-disk.img
https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-disk1.img
https://www.youtube.com/watch?v=M3qbJDp6QBk

Yardstick, Release Latest

Delete the Yardstick container

If you want to uninstall Yardstick, just delete the Yardstick container:

sudo docker stop yardstick && docker rm yardstick

2.4.3 Install Yardstick directly in Ubuntu (second option)

Alternatively you can install Yardstick framework directly in Ubuntu or in an Ubuntu Docker image. No matter which
way you choose to install Yardstick, the following installation steps are identical.

If you choose to use the Ubuntu Docker image, you can pull the Ubuntu Docker image from Docker hub:

sudo -EH docker pull ubuntu:16.04

Install Yardstick

Prerequisite preparation:

sudo -EH apt-get update && sudo -EH apt-get install -y \
git python-setuptools python-pip

sudo -EH easy_install -U setuptools==30.0.0
sudo -EH pip install appdirs==1.4.0
sudo -EH pip install virtualenv

Download the source code and install Yardstick from it:

git clone https://gerrit.opnfv.org/gerrit/yardstick
export YARDSTICK_REPO_DIR=~/yardstick
cd ~/yardstick
sudo -EH ./install.sh

If the host is ever restarted, nginx and uwsgi need to be restarted:

service nginx restart
uwsgi -i /etc/yardstick/yardstick.ini

Configure the Yardstick environment (Todo)

For installing Yardstick directly in Ubuntu, the yardstick env command is not available. You need to prepare
OpenStack environment variables and create Yardstick flavor and guest images manually.

Uninstall Yardstick

For uninstalling Yardstick, just delete the virtual environment:

rm -rf ~/yardstick_venv

2.4.4 Install Yardstick directly in OpenSUSE

You can install Yardstick framework directly in OpenSUSE.

22 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Install Yardstick

Prerequisite preparation:

sudo -EH zypper -n install -y gcc \
wget \
git \
sshpass \
qemu-tools \
kpartx \
libffi-devel \
libopenssl-devel \
python \
python-devel \
python-virtualenv \
libxml2-devel \
libxslt-devel \
python-setuptools-git

Create a virtual environment:

virtualenv ~/yardstick_venv
export YARDSTICK_VENV=~/yardstick_venv
source ~/yardstick_venv/bin/activate
sudo -EH easy_install -U setuptools

Download the source code and install Yardstick from it:

git clone https://gerrit.opnfv.org/gerrit/yardstick
export YARDSTICK_REPO_DIR=~/yardstick
cd yardstick
sudo -EH python setup.py install
sudo -EH pip install -r requirements.txt

Install missing python modules:

sudo -EH pip install pyyaml \
oslo_utils \
oslo_serialization \
oslo_config \
paramiko \
python.heatclient \
python.novaclient \
python.glanceclient \
python.neutronclient \
scp \
jinja2

Configure the Yardstick environment

Source the OpenStack environment variables:

source DEVSTACK_DIRECTORY/openrc

Export the Openstack external network. The default installation of Devstack names the external network public:

2.4. Yardstick Installation 23

Yardstick, Release Latest

export EXTERNAL_NETWORK=public
export OS_USERNAME=demo

Change the API version used by Yardstick to v2.0 (the devstack openrc sets it to v3):

export OS_AUTH_URL=http://PUBLIC_IP_ADDRESS:5000/v2.0

Uninstall Yardstick

For unistalling Yardstick, just delete the virtual environment:

rm -rf ~/yardstick_venv

2.4.5 Verify the installation

It is recommended to verify that Yardstick was installed successfully by executing some simple commands and test
samples. Before executing Yardstick test cases make sure yardstick-flavor and yardstick-image can be
found in OpenStack and the openrc file is sourced. Below is an example invocation of Yardstick help command
and ping.py test sample:

yardstick -h
yardstick task start samples/ping.yaml

Note: The above commands could be run in both the Yardstick container and the Ubuntu directly.

Each testing tool supported by Yardstick has a sample configuration file. These configuration files can be found in the
samples directory.

Default location for the output is /tmp/yardstick.out.

2.4.6 Automatic installation of Yardstick

Automatic installation can be used as an alternative to the manual by providing parameters for ansible script
install.yaml in a nsb_setup.sh file. Yardstick can be installed on the bare metal and to the container. Yard-
stick container can be either pulled or built.

Bare metal installation

Modify nsb_setup.sh file install.yaml parameters to install Yardstick on Ubuntu server:

ansible-playbook -i install-inventory.ini install.yaml \
-e IMAGE_PROPERTY='none' \
-e YARDSTICK_DIR=<path to Yardstick folder>

Note: By default INSTALLATION_MODE is baremetal.

Note: No modification in install-inventory.ini is needed for Yardstick installation.

24 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Note: To install Yardstick in virtual environment pass parameter -e VIRTUAL_ENVIRONMENT=True.

Container installation

Modify install.yaml parameters in nsb_setup.sh file to pull or build Yardstick container. To pull Yardstick
image and start container run:

ansible-playbook -i install-inventory.ini install.yaml \
-e IMAGE_PROPERTY='none' \
-e INSTALLATION_MODE=container_pull

Note: Yardstick docker image is available for both Ubuntu 16.04 and Ubuntu 18.04. By default Ubuntu 16.04 based
docker image is used. To use Ubuntu 18.04 based docker image pass -i opnfv/yardstick-ubuntu-18.04
parameter to nsb_setup.sh.

To build Yardstick image modify Dockerfile as per comments in it and run:

cd yardstick
docker build -f docker/Dockerfile -t opnfv/yardstick:<tag> .

Note: Yardstick docker image based on Ubuntu 16.04 will be built. Pass -f docker/Dockerfile_ubuntu18
to build Yardstick docker image based on Ubuntu 18.04.

Note: Add --build-arg http_proxy=http://<proxy_host>:<proxy_port> to build docker image
if server is behind the proxy.

Parameters for install.yaml

Description of the parameters used with install.yaml:

2.4. Yardstick Installation 25

Yardstick, Release Latest

Parameters Detail
-i install-inventory.ini

Installs package dependency to remote servers
and localhost
Mandatory parameter
By default no remote servers are provided

-e YARDSTICK_DIR

Path to Yardstick folder
Mandatory parameter for Yardstick bare metal
installation

-e INSTALLATION_MODE

baremetal: Yardstick is installed to the bare metal
Default parameter

container: Yardstick is installed in container
Container is built from Dockerfile

container_pull: Yardstick is installed in
container
Container is pulled from docker hub

-e OS_RELEASE

xenial or bionic: Ubuntu version to be used for
VM image (nsb or normal)
Default is Ubuntu 16.04, xenial

-e IMAGE_PROPERTY

nsb: Build Yardstick NSB VM image
Used to run Yardstick NSB tests on sample VNF
Default parameter

normal: Build VM image to run ping test in
OpenStack

none: don’t build a VM image.

-e VIRTUAL_ENVIRONMENT

False or True: Whether install in virtualenv
Default is False

-e YARD_IMAGE_ARCH

CPU architecture on servers
Default is ‘amd64’

26 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.4.7 Deploy InfluxDB and Grafana using Docker

Without InfluxDB, Yardstick stores results for running test case in the file /tmp/yardstick.out. However, it’s
inconvenient to retrieve and display test results. So we will show how to use InfluxDB to store data and use Grafana
to display data in the following sections.

Automatic deployment of InfluxDB and Grafana containers (recommended)

1. Enter the Yardstick container:

sudo -EH docker exec -it yardstick /bin/bash

2. Create InfluxDB container and configure with the following command:

yardstick env influxdb

3. Create and configure Grafana container:

yardstick env grafana

Then you can run a test case and visit http://host_ip:1948 (admin/admin) to see the results.

Note: Executing yardstick env command to deploy InfluxDB and Grafana requires Jumphost’s docker API
version => 1.24. Run the following command to check the docker API version on the Jumphost:

docker version

Manual deployment of InfluxDB and Grafana containers

You can also deploy influxDB and Grafana containers manually on the Jumphost. The following sections show how
to do.

Pull docker images:

sudo -EH docker pull tutum/influxdb
sudo -EH docker pull grafana/grafana

Run influxDB:

sudo -EH docker run -d --name influxdb \
-p 8083:8083 -p 8086:8086 --expose 8090 --expose 8099 \
tutum/influxdb

Configure influxDB:

docker exec -it influxdb influx
> CREATE USER root WITH PASSWORD 'root' WITH ALL PRIVILEGES
> CREATE DATABASE yardstick;
> use yardstick;
> show MEASUREMENTS;
> exit

Run Grafana:

2.4. Yardstick Installation 27

http://host_ip:1948

Yardstick, Release Latest

sudo -EH docker run -d --name grafana -p 1948:3000 grafana/grafana

Log on to http://{YOUR_IP_HERE}:1948 using admin/admin and configure database resource to be
{YOUR_IP_HERE}:8086.

Configure yardstick.conf:

sudo -EH docker exec -it yardstick /bin/bash
sudo cp etc/yardstick/yardstick.conf.sample /etc/yardstick/yardstick.conf
sudo vi /etc/yardstick/yardstick.conf

Modify yardstick.conf to add the influxdb dispatcher:

[DEFAULT]
debug = True
dispatcher = influxdb

[dispatcher_influxdb]
timeout = 5
target = http://{YOUR_IP_HERE}:8086
db_name = yardstick
username = root
password = root

Now Yardstick will store results in InfluxDB when you run a testcase.

28 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.4.8 Deploy InfluxDB and Grafana directly in Ubuntu (Todo)

2.4.9 Proxy Support

To configure the Jumphost to access Internet through a proxy its necessary to export several variables to the environ-
ment, contained in the following script:

#!/bin/sh
_proxy=<proxy_address>
_proxyport=<proxy_port>
_ip=$(hostname -I | awk '{print $1}')

export ftp_proxy=http://$_proxy:$_proxyport
export FTP_PROXY=http://$_proxy:$_proxyport
export http_proxy=http://$_proxy:$_proxyport
export HTTP_PROXY=http://$_proxy:$_proxyport
export https_proxy=http://$_proxy:$_proxyport
export HTTPS_PROXY=http://$_proxy:$_proxyport
export no_proxy=127.0.0.1,localhost,$_ip,$(hostname),<.localdomain>
export NO_PROXY=127.0.0.1,localhost,$_ip,$(hostname),<.localdomain>

To enable Internet access from a container using docker, depends on the OS version. On Ubuntu 14.04 LTS, which
uses SysVinit, /etc/default/docker must be modified:

.......
If you need Docker to use an HTTP proxy, it can also be specified here.
export http_proxy="http://<proxy_address>:<proxy_port>/"
export https_proxy="https://<proxy_address>:<proxy_port>/"

Then its necessary to restart the docker service:

sudo -EH service docker restart

In Ubuntu 16.04 LTS, which uses Systemd, its necessary to create a drop-in directory:

sudo mkdir /etc/systemd/system/docker.service.d

Then, the proxy configuration will be stored in the following file:

cat /etc/systemd/system/docker.service.d/http-proxy.conf
[Service]
Environment="HTTP_PROXY=https://<proxy_address>:<proxy_port>/"
Environment="HTTPS_PROXY=https://<proxy_address>:<proxy_port>/"
Environment="NO_PROXY=localhost,127.0.0.1,<localaddress>,<.localdomain>"

The changes need to be flushed and the docker service restarted:

sudo systemctl daemon-reload
sudo systemctl restart docker

Any container is already created won’t contain these modifications. If needed, stop and delete the container:

sudo docker stop yardstick
sudo docker rm yardstick

2.4. Yardstick Installation 29

Yardstick, Release Latest

Warning: Be careful, the above rm command will delete the container completely. Everything on this container
will be lost.

Then follow the previous instructions Prepare the Yardstick container to rebuild the Yardstick container.

2.4.10 References

2.5 Yardstick Usage

Once you have yardstick installed, you can start using it to run testcases immediately, through the CLI. You can also
define and run new testcases and test suites. This chapter details basic usage (running testcases), as well as more
advanced usage (creating your own testcases).

2.5.1 Yardstick common CLI

List test cases

yardstick testcase list: This command line would list all test cases in Yardstick. It would show like below:

+---
→˓--
| Testcase Name | Description
+---
→˓--
| opnfv_yardstick_tc001 | Measure network throughput using pktgen
| opnfv_yardstick_tc002 | measure network latency using ping
| opnfv_yardstick_tc005 | Measure Storage IOPS, throughput and latency using fio.
...
+---
→˓--

Show a test case config file

Take opnfv_yardstick_tc002 for an example. This test case measure network latency. You just need to type in
yardstick testcase show opnfv_yardstick_tc002, and the console would show the config yaml of
this test case:

schema: "yardstick:task:0.1"
description: >

Yardstick TC002 config file;
measure network latency using ping;

{% set image = image or "cirros-0.3.5" %}

{% set provider = provider or none %}
{% set physical_network = physical_network or 'physnet1' %}
{% set segmentation_id = segmentation_id or none %}
{% set packetsize = packetsize or 100 %}

(continues on next page)

30 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

scenarios:
{% for i in range(2) %}
-

type: Ping
options:
packetsize: {{packetsize}}

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 10

sla:
max_rtt: 10
action: monitor

{% endfor %}

context:
name: demo
image: {{image}}
flavor: yardstick-flavor
user: cirros

placement_groups:
pgrp1:

policy: "availability"

servers:
athena:

floating_ip: true
placement: "pgrp1"

ares:
placement: "pgrp1"

networks:
test:

cidr: '10.0.1.0/24'
{% if provider == "vlan" or provider == "sriov" %}
provider: {{provider}}
physical_network: {{physical_network}}

{% if segmentation_id %}
segmentation_id: {{segmentation_id}}

{% endif %}
{% endif %}

Run a Yardstick test case

If you want run a test case, then you need to use yardstick task start <test_case_path> this command
support some parameters as below:

2.5. Yardstick Usage 31

Yardstick, Release Latest

Parameters Detail
-d show debug log of yardstick running
–task-args If you want to customize test case parameters, use “–task-args” to pass the

value. The format is a json string with parameter key-value pair.
–task-args-file If you want to use yardstick env prepare command(or related API) to load the
–parse-only
–output-file OUT-
PUT_FILE_PATH

Specify where to output the log. if not pass, the default value is
“/tmp/yardstick/yardstick.log”

–suite
TEST_SUITE_PATH

run a test suite, TEST_SUITE_PATH specify where the test suite locates

2.5.2 Run Yardstick in a local environment

We also have a guide about How to run Yardstick in a local environment. This work is contributed by Tapio Tallgren.

2.5.3 Create a new testcase for Yardstick

As a user, you may want to define a new testcase in addition to the ones already available in Yardstick. This section
will show you how to do this.

Each testcase consists of two sections:

• scenarios describes what will be done by the test

• context describes the environment in which the test will be run.

Defining the testcase scenarios

TODO

Defining the testcase context(s)

Each testcase consists of one or more contexts, which describe the environment in which the testcase will be run.
Current available contexts are:

• Dummy: this is a no-op context, and is used when there is no environment to set up e.g. when testing whether
OpenStack services are available

• Node: this context is used to perform operations on baremetal servers

• Heat: uses OpenStack to provision the required hosts, networks, etc.

• Kubernetes: uses Kubernetes to provision the resources required for the test.

Regardless of the context type, the context section of the testcase will consist of the following:

context:
name: demo
type: Dummy|Node|Heat|Kubernetes

The content of the context section will vary based on the context type.

32 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/display/yardstick/How+to+run+Yardstick+in+a+local+environment

Yardstick, Release Latest

Dummy Context

No additional information is required for the Dummy context:

context:
name: my_context
type: Dummy

Node Context

TODO

Heat Context

In addition to name and type, a Heat context requires the following arguments:

• image: the image to be used to boot VMs

• flavor: the flavor to be used for VMs in the context

• user: the username for connecting into the VMs

• networks: The networks to be created, networks are identified by name

– name: network name (required)

– (TODO) Any optional attributes

• servers: The servers to be created

– name: server name

– (TODO) Any optional attributes

In addition to the required arguments, the following optional arguments can be passed to the Heat context:

• placement_groups:

– name: the name of the placement group to be created

– policy: either affinity or availability

• server_groups:

– name: the name of the server group

– policy: either affinity or anti-affinity

Combining these elements together, a sample Heat context config looks like:

Sample Heat context config with Dummy context

schema: "yardstick:task:0.1"

scenarios:
-

type: Dummy

runner:
type: Duration

(continues on next page)

2.5. Yardstick Usage 33

Yardstick, Release Latest

(continued from previous page)

duration: 5
interval: 1

context:
name: {{ context_name }}
image: yardstick-image
flavor: yardstick-flavor
user: ubuntu

servers:
athena:

name: athena
ares:

name: ares

networks:
test:

name: test

Using exisiting HOT Templates

TODO

Kubernetes Context

TODO

Using multiple contexts in a testcase

When using multiple contexts in a testcase, the context section is replaced by a contexts section, and each
context is separated with a - line:

contexts:
-

name: context1
type: Heat
...

-
name: context2
type: Node
...

Reusing a context

Typically, a context is torn down after a testcase is run, however, the user may wish to keep an context intact after a
testcase is complete.

Note: This feature has been implemented for the Heat context only

34 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

To keep or reuse a context, the flags option must be specified:

• no_setup: skip the deploy stage, and fetch the details of a deployed context/Heat stack.

• no_teardown: skip the undeploy stage, thus keeping the stack intact for the next test

If either of these flags are True, the context information must still be given. By default, these flags are disabled:

context:
name: mycontext
type: Heat
flags:
no_setup: True
no_teardown: True

...

2.5.4 Create a test suite for Yardstick

A test suite in Yardstick is a .yaml file which includes one or more test cases. Yardstick is able to support running test
suite task, so you can customize your own test suite and run it in one task.

tests/opnfv/test_suites is the folder where Yardstick puts CI test suite. A typical test suite is like below
(the fuel_test_suite.yaml example):

Fuel integration test task suite

schema: "yardstick:suite:0.1"

name: "fuel_test_suite"
test_cases_dir: "samples/"
test_cases:
-

file_name: ping.yaml
-

file_name: iperf3.yaml

As you can see, there are two test cases in the fuel_test_suite.yaml. The schema and the name must be
specified. The test cases should be listed via the tag test_cases and their relative path is also marked via the tag
test_cases_dir.

Yardstick test suite also supports constraints and task args for each test case. Here is another sample (the
os-nosdn-nofeature-ha.yaml example) to show this, which is digested from one big test suite:

schema: "yardstick:suite:0.1"

name: "os-nosdn-nofeature-ha"
test_cases_dir: "tests/opnfv/test_cases/"
test_cases:
-

file_name: opnfv_yardstick_tc002.yaml
-

file_name: opnfv_yardstick_tc005.yaml
-

file_name: opnfv_yardstick_tc043.yaml
constraint:

(continues on next page)

2.5. Yardstick Usage 35

Yardstick, Release Latest

(continued from previous page)

installer: compass
pod: huawei-pod1

task_args:
huawei-pod1: '{"pod_info": "etc/yardstick/.../pod.yaml",
"host": "node4.LF","target": "node5.LF"}'

As you can see in test case opnfv_yardstick_tc043.yaml, there are two tags, constraint and
task_args. constraint is to specify which installer or pod it can be run in the CI environment. task_args is
to specify the task arguments for each pod.

All in all, to create a test suite in Yardstick, you just need to create a yaml file and add test cases, constraint or task
arguments if necessary.

2.5.5 References

2.6 Installing a plug-in into Yardstick

2.6.1 Abstract

Yardstick provides a plugin CLI command to support integration with other OPNFV testing projects. Below is an
example invocation of Yardstick plugin command and Storperf plug-in sample.

2.6.2 Installing Storperf into Yardstick

Storperf is delivered as a Docker container from https://hub.docker.com/r/opnfv/storperf/tags/.

There are two possible methods for installation in your environment:

• Run container on Jump Host

• Run container in a VM

In this introduction we will install Storperf on Jump Host.

Step 0: Environment preparation

Running Storperf on Jump Host Requirements:

• Docker must be installed

• Jump Host must have access to the OpenStack Controller API

• Jump Host must have internet connectivity for downloading docker image

• Enough floating IPs must be available to match your agent count

Before installing Storperf into yardstick you need to check your openstack environment and other dependencies:

1. Make sure docker is installed.

2. Make sure Keystone, Nova, Neutron, Glance, Heat are installed correctly.

3. Make sure Jump Host have access to the OpenStack Controller API.

4. Make sure Jump Host must have internet connectivity for downloading docker image.

36 Chapter 2. Yardstick User Guide

https://hub.docker.com/r/opnfv/storperf/tags/

Yardstick, Release Latest

5. You need to know where to get basic openstack Keystone authorization info, such as OS_PASSWORD,
OS_PROJECT_NAME, OS_AUTH_URL, OS_USERNAME.

6. To run a Storperf container, you need to have OpenStack Controller environment variables defined and passed
to Storperf container. The best way to do this is to put environment variables in a “storperf_admin-rc” file. The
storperf_admin-rc should include credential environment variables at least:

• OS_AUTH_URL

• OS_USERNAME

• OS_PASSWORD

• OS_PROJECT_NAME

• OS_PROJECT_ID

• OS_USER_DOMAIN_ID

Yardstick has a prepare_storperf_admin-rc.sh script which can be used to generate the
storperf_admin-rc file, this script is located at test/ci/prepare_storperf_admin-rc.sh

#!/bin/bash
Prepare storperf_admin-rc for StorPerf.
AUTH_URL=${OS_AUTH_URL}
USERNAME=${OS_USERNAME:-admin}
PASSWORD=${OS_PASSWORD:-console}

OS_TENANT_NAME is still present to keep backward compatibility with legacy
deployments, but should be replaced by OS_PROJECT_NAME.
TENANT_NAME=${OS_TENANT_NAME:-admin}
PROJECT_NAME=${OS_PROJECT_NAME:-$TENANT_NAME}
PROJECT_ID=`openstack project show admin|grep '\bid\b' |awk -F '|' '{print $3}'|sed -
→˓e 's/^[[:space:]]*//'`
USER_DOMAIN_ID=${OS_USER_DOMAIN_ID:-default}

rm -f ~/storperf_admin-rc
touch ~/storperf_admin-rc

echo "OS_AUTH_URL="$AUTH_URL >> ~/storperf_admin-rc
echo "OS_USERNAME="$USERNAME >> ~/storperf_admin-rc
echo "OS_PASSWORD="$PASSWORD >> ~/storperf_admin-rc
echo "OS_PROJECT_NAME="$PROJECT_NAME >> ~/storperf_admin-rc
echo "OS_PROJECT_ID="$PROJECT_ID >> ~/storperf_admin-rc
echo "OS_USER_DOMAIN_ID="$USER_DOMAIN_ID >> ~/storperf_admin-rc

The generated storperf_admin-rc file will be stored in the root directory. If you installed Yardstick using Docker,
this file will be located in the container. You may need to copy it to the root directory of the Storperf deployed host.

Step 1: Plug-in configuration file preparation

To install a plug-in, first you need to prepare a plug-in configuration file in YAML format and store it in the “plugin”
directory. The plugin configration file work as the input of yardstick “plugin” command. Below is the Storperf plug-in
configuration file sample:

StorPerf plugin configuration file
Used for integration StorPerf into Yardstick as a plugin
schema: "yardstick:plugin:0.1"

(continues on next page)

2.6. Installing a plug-in into Yardstick 37

Yardstick, Release Latest

(continued from previous page)

plugins:
name: storperf

deployment:
ip: 192.168.23.2
user: root
password: root

In the plug-in configuration file, you need to specify the plug-in name and the plug-in deployment info, including node
ip, node login username and password. Here the Storperf will be installed on IP 192.168.23.2 which is the Jump Host
in my local environment.

Step 2: Plug-in install/remove scripts preparation

In yardstick/resource/scripts directory, there are two folders: an install folder and a remove folder.
You need to store the plug-in install/remove scripts in these two folders respectively.

The detailed installation or remove operation should de defined in these two scripts. The name of both install and
remove scripts should match the plugin-in name that you specified in the plug-in configuration file.

For example, the install and remove scripts for Storperf are both named storperf.bash.

Step 3: Install and remove Storperf

To install Storperf, simply execute the following command:

Install Storperf
yardstick plugin install plugin/storperf.yaml

Removing Storperf from Yardstick

To remove Storperf, simply execute the following command:

Remove Storperf
yardstick plugin remove plugin/storperf.yaml

What yardstick plugin command does is using the username and password to log into the deployment target and then
execute the corresponding install or remove script.

2.7 Store Other Project’s Test Results in InfluxDB

2.7.1 Abstract

This chapter illustrates how to run plug-in test cases and store test results into community’s InfluxDB. The framework
is shown in Framework.

38 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/download/attachments/6827660/wiki.png?version=1&modificationDate=1470298075000&api=v2

Yardstick, Release Latest

2.7.2 Store Storperf Test Results into Community’s InfluxDB

As shown in Framework, there are two ways to store Storperf test results into community’s InfluxDB:

1. Yardstick executes Storperf test case (TC074), posting test job to Storperf container via ReST API. After the test
job is completed, Yardstick reads test results via ReST API from Storperf and posts test data to the influxDB.

2. Additionally, Storperf can run tests by itself and post the test result directly to the InfluxDB. The method for
posting data directly to influxDB will be supported in the future.

Our plan is to support rest-api in D release so that other testing projects can call the rest-api to use yardstick dispatcher
service to push data to Yardstick’s InfluxDB database.

For now, InfluxDB only supports line protocol, and the json protocol is deprecated.

Take ping test case for example, the raw_result is json format like this:

"benchmark": {
"timestamp": 1470315409.868095,
"errors": "",
"data": {

"rtt": {
"ares": 1.125
}

},
"sequence": 1
},

"runner_id": 2625
}

With the help of “influxdb_line_protocol”, the json is transform to like below as a line string:

'ping,deploy_scenario=unknown,host=athena.demo,installer=unknown,pod_name=unknown,
runner_id=2625,scenarios=Ping,target=ares.demo,task_id=77755f38-1f6a-4667-a7f3-
301c99963656,version=unknown rtt.ares=1.125 1470315409868094976'

2.7. Store Other Project’s Test Results in InfluxDB 39

https://wiki.opnfv.org/download/attachments/6827660/wiki.png?version=1&modificationDate=1470298075000&api=v2

Yardstick, Release Latest

So, for data output of json format, you just need to transform json into line format and call influxdb api to post the
data into the database. All this function has been implemented in Influxdb. If you need support on this, please contact
Mingjiang.

curl -i -XPOST 'http://104.197.68.199:8086/write?db=yardstick' --
data-binary 'ping,deploy_scenario=unknown,host=athena.demo,installer=unknown, ...'

Grafana will be used for visualizing the collected test data, which is shown in Visual. Grafana can be accessed by
Login.

2.8 Grafana dashboard

2.8.1 Abstract

This chapter describes the Yardstick grafana dashboard. The Yardstick grafana dashboard can be found here: http:
//testresults.opnfv.org/grafana/

40 Chapter 2. Yardstick User Guide

https://git.opnfv.org/cgit/yardstick/tree/yardstick/dispatcher/influxdb.py
mailto:limingjiang@huawei.com
https://wiki.opnfv.org/download/attachments/6827660/tc074.PNG?version=1&modificationDate=1470298075000&api=v2
http://testresults.opnfv.org/grafana/login
http://testresults.opnfv.org/grafana/
http://testresults.opnfv.org/grafana/

Yardstick, Release Latest

2.8.2 Public access

Yardstick provids a public account for accessing to the dashboard. The username and password are both set to ‘opnfv’.

2.8.3 Testcase dashboard

For each test case, there is a dedicated dashboard. Shown here is the dashboard of TC002.

For each test case dashboard. On the top left, we have a dashboard selection, you can switch to different test cases
using this pull-down menu.

Underneath, we have a pod and scenario selection. All the pods and scenarios that have ever published test data to the
InfluxDB will be shown here.

You can check multiple pods or scenarios.

For each test case, we have a short description and a link to detailed test case information in Yardstick user guide.

Underneath, it is the result presentation section. You can use the time period selection on the top right corner to zoom
in or zoom out the chart.

2.8.4 Administration access

For a user with administration rights it is easy to update and save any dashboard configuration. Saved updates imme-
diately take effect and become live. This may cause issues like:

• Changes and updates made to the live configuration in Grafana can compromise existing Grafana content in an
unwanted, unpredicted or incompatible way. Grafana as such is not version controlled, there exists one single
Grafana configuration per dashboard.

• There is a risk several people can disturb each other when doing updates to the same Grafana dashboard at the
same time.

Any change made by administrator should be careful.

2.8.5 Add a dashboard into Yardstick Grafana

Due to security concern, users that using the public opnfv account are not able to edit the yardstick grafana directly. It
takes a few more steps for a non-yardstick user to add a custom dashboard into yardstick grafana.

2.8. Grafana dashboard 41

Yardstick, Release Latest

There are 6 steps to go.

1. You need to build a local influxdb and grafana, so you can do the work locally. You can refer to How to deploy
InfluxDB and Grafana locally wiki page about how to do this.

2. Once step one is done, you can fetch the existing grafana dashboard configuration file from the yardstick repos-
itory and import it to your local grafana. After import is done, you grafana dashboard will be ready to use just
like the community’s dashboard.

3. The third step is running some test cases to generate test results and publishing it to your local influxdb.

4. Now you have some data to visualize in your dashboard. In the fourth step, it is time to create your own
dashboard. You can either modify an existing dashboard or try to create a new one from scratch. If you choose
to modify an existing dashboard then in the curtain menu of the existing dashboard do a “Save As. . . ” into a
new dashboard copy instance, and then continue doing all updates and saves within the dashboard copy.

5. When finished with all Grafana configuration changes in this temporary dashboard then chose “export” of
the updated dashboard copy into a JSON file and put it up for review in Gerrit, in file /yardstick/
dashboard/Yardstick-TCxxx-yyyyyyyyyyyyy. For instance a typical default name of the file would
be Yardstick-TC001 Copy-1234567891234.

6. Once you finish your dashboard, the next step is exporting the configuration file and propose a patch into
Yardstick. Yardstick team will review and merge it into Yardstick repository. After approved review Yardstick
team will do an “import” of the JSON file and also a “save dashboard” as soon as possible to replace the old live
dashboard configuration.

2.9 Yardstick Restful API

2.9.1 Abstract

Yardstick support restful API since Danube.

2.9.2 Available API

42 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

/yardstick/env/action

Description: This API is used to prepare Yardstick test environment. For Euphrates, it supports:

1. Prepare yardstick test environment, including setting the EXTERNAL_NETWORK environment variable, load
Yardstick VM images and create flavors;

2. Start an InfluxDB Docker container and config Yardstick output to InfluxDB;

3. Start a Grafana Docker container and config it with the InfluxDB.

Which API to call will depend on the parameters.

Method: POST

Prepare Yardstick test environment Example:

{
'action': 'prepare_env'

}

This is an asynchronous API. You need to call /yardstick/asynctask API to get the task result.

Start and config an InfluxDB docker container Example:

{
'action': 'create_influxdb'

}

This is an asynchronous API. You need to call /yardstick/asynctask API to get the task result.

Start and config a Grafana docker container Example:

{
'action': 'create_grafana'

}

This is an asynchronous API. You need to call /yardstick/asynctask API to get the task result.

/yardstick/asynctask

Description: This API is used to get the status of asynchronous tasks

Method: GET

Get the status of asynchronous tasks Example:

http://<SERVER IP>:<PORT>/yardstick/asynctask?task_id=3f3f5e03-972a-4847-a5f8-
→˓154f1b31db8c

The returned status will be 0(running), 1(finished) and 2(failed).

NOTE:

<SERVER IP>: The ip of the host where you start your yardstick container
<PORT>: The outside port of port mapping which set when you start start yardstick
→˓container

2.9. Yardstick Restful API 43

Yardstick, Release Latest

/yardstick/testcases

Description: This API is used to list all released Yardstick test cases.

Method: GET

Get a list of released test cases Example:

http://<SERVER IP>:<PORT>/yardstick/testcases

/yardstick/testcases/release/action

Description: This API is used to run a Yardstick released test case.

Method: POST

Run a released test case Example:

{
'action': 'run_test_case',
'args': {

'opts': {},
'testcase': 'opnfv_yardstick_tc002'

}
}

This is an asynchronous API. You need to call /yardstick/results to get the result.

/yardstick/testcases/samples/action

Description: This API is used to run a Yardstick sample test case.

Method: POST

Run a sample test case Example:

{
'action': 'run_test_case',
'args': {

'opts': {},
'testcase': 'ping'

}
}

This is an asynchronous API. You need to call /yardstick/results to get the result.

/yardstick/testcases/<testcase_name>/docs

Description: This API is used to the documentation of a certain released test case.

Method: GET

Get the documentation of a certain test case Example:

http://<SERVER IP>:<PORT>/yardstick/taskcases/opnfv_yardstick_tc002/docs

44 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

/yardstick/testsuites/action

Description: This API is used to run a Yardstick test suite.

Method: POST

Run a test suite Example:

{
'action': 'run_test_suite',
'args': {

'opts': {},
'testsuite': 'opnfv_smoke'

}
}

This is an asynchronous API. You need to call /yardstick/results to get the result.

/yardstick/tasks/<task_id>/log

Description: This API is used to get the real time log of test case execution.

Method: GET

Get real time of test case execution Example:

http://<SERVER IP>:<PORT>/yardstick/tasks/14795be8-f144-4f54-81ce-43f4e3eab33f/log?
→˓index=0

/yardstick/results

Description: This API is used to get the test results of tasks. If you call /yardstick/testcases/samples/action API, it will
return a task id. You can use the returned task id to get the results by using this API.

Method: GET

Get test results of one task Example:

http://<SERVER IP>:<PORT>/yardstick/results?task_id=3f3f5e03-972a-4847-a5f8-
→˓154f1b31db8c

This API will return a list of test case result

/api/v2/yardstick/openrcs

Description: This API provides functionality of handling OpenStack credential file (openrc). For Euphrates, it sup-
ports:

1. Upload an openrc file for an OpenStack environment;

2. Update an openrc;

3. Get openrc file information;

4. Delete an openrc file.

2.9. Yardstick Restful API 45

Yardstick, Release Latest

Which API to call will depend on the parameters.

METHOD: POST

Upload an openrc file for an OpenStack environment Example:

{
'action': 'upload_openrc',
'args': {

'file': file,
'environment_id': environment_id

}
}

METHOD: POST

Update an openrc file Example:

{
'action': 'update_openrc',
'args': {

'openrc': {
"EXTERNAL_NETWORK": "ext-net",
"OS_AUTH_URL": "http://192.168.23.51:5000/v3",
"OS_IDENTITY_API_VERSION": "3",
"OS_IMAGE_API_VERSION": "2",
"OS_PASSWORD": "console",
"OS_PROJECT_DOMAIN_NAME": "default",
"OS_PROJECT_NAME": "admin",
"OS_USERNAME": "admin",
"OS_USER_DOMAIN_NAME": "default"

},
'environment_id': environment_id

}
}

/api/v2/yardstick/openrcs/<openrc_id>

Description: This API provides functionality of handling OpenStack credential file (openrc). For Euphrates, it sup-
ports:

1. Get openrc file information;

2. Delete an openrc file.

METHOD: GET

Get openrc file information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/openrcs/5g6g3e02-155a-4847-a5f8-
→˓154f1b31db8c

METHOD: DELETE

Delete openrc file Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/openrcs/5g6g3e02-155a-4847-a5f8-
→˓154f1b31db8c

46 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

/api/v2/yardstick/pods

Description: This API provides functionality of handling Yardstick pod file (pod.yaml). For Euphrates, it supports:

1. Upload a pod file;

Which API to call will depend on the parameters.

METHOD: POST

Upload a pod.yaml file Example:

{
'action': 'upload_pod_file',
'args': {

'file': file,
'environment_id': environment_id

}
}

/api/v2/yardstick/pods/<pod_id>

Description: This API provides functionality of handling Yardstick pod file (pod.yaml). For Euphrates, it supports:

1. Get pod file information;

2. Delete an openrc file.

METHOD: GET

Get pod file information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/pods/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete openrc file Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/pods/5g6g3e02-155a-4847-a5f8-154f1b31db8c

/api/v2/yardstick/images

Description: This API is used to do some work related to Yardstick VM images. For Euphrates, it supports:

1. Load Yardstick VM images;

Which API to call will depend on the parameters.

METHOD: POST

Load VM images Example:

{
'action': 'load_image',
'args': {

'name': 'yardstick-image'
}

}

2.9. Yardstick Restful API 47

Yardstick, Release Latest

/api/v2/yardstick/images/<image_id>

Description: This API is used to do some work related to Yardstick VM images. For Euphrates, it supports:

1. Get image’s information;

2. Delete images

METHOD: GET

Get image information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/images/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete images Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/images/5g6g3e02-155a-4847-a5f8-154f1b31db8c

/api/v2/yardstick/tasks

Description: This API is used to do some work related to yardstick tasks. For Euphrates, it supports:

1. Create a Yardstick task;

Which API to call will depend on the parameters.

METHOD: POST

Create a Yardstick task Example:

{
'action': 'create_task',

'args': {
'name': 'task1',
'project_id': project_id

}
}

/api/v2/yardstick/tasks/<task_id>

Description: This API is used to do some work related to yardstick tasks. For Euphrates, it supports:

1. Add a environment to a task

2. Add a test case to a task;

3. Add a test suite to a task;

4. run a Yardstick task;

5. Get a tasks’ information;

6. Delete a task.

METHOD: PUT

Add a environment to a task

Example:

48 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

{
'action': 'add_environment',
'args': {

'environment_id': 'e3cadbbb-0419-4fed-96f1-a232daa0422a'
}

}

METHOD: PUT

Add a test case to a task Example:

{
'action': 'add_case',
'args': {

'case_name': 'opnfv_yardstick_tc002',
'case_content': case_content

}
}

METHOD: PUT

Add a test suite to a task Example:

{
'action': 'add_suite',
'args': {

'suite_name': 'opnfv_smoke',
'suite_content': suite_content

}
}

METHOD: PUT

Run a task

Example:

{
'action': 'run'

}

METHOD: GET

Get a task’s information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/tasks/5g6g3e02-155a-4847-a5f8-154f1b31db8c

METHOD: DELETE

Delete a task

Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/tasks/5g6g3e02-155a-4847-a5f8-154f1b31db8c

/api/v2/yardstick/testcases

Description: This API is used to do some work related to Yardstick testcases. For Euphrates, it supports:

2.9. Yardstick Restful API 49

Yardstick, Release Latest

1. Upload a test case;

2. Get all released test cases’ information;

Which API to call will depend on the parameters.

METHOD: POST

Upload a test case Example:

{
'action': 'upload_case',
'args': {

'file': file
}

}

METHOD: GET

Get all released test cases’ information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases

/api/v2/yardstick/testcases/<case_name>

Description: This API is used to do some work related to yardstick testcases. For Euphrates, it supports:

1. Get certain released test case’s information;

2. Delete a test case.

METHOD: GET

Get certain released test case’s information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases/opnfv_yardstick_tc002

METHOD: DELETE

Delete a certain test case Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testcases/opnfv_yardstick_tc002

/api/v2/yardstick/testsuites

Description: This API is used to do some work related to yardstick test suites. For Euphrates, it supports:

1. Create a test suite;

2. Get all test suites;

Which API to call will depend on the parameters.

METHOD: POST

Create a test suite Example:

50 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

{
'action': 'create_suite',
'args': {

'name': <suite_name>,
'testcases': [

'opnfv_yardstick_tc002'
]

}
}

METHOD: GET

Get all test suite Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites

/api/v2/yardstick/testsuites

Description: This API is used to do some work related to yardstick test suites. For Euphrates, it supports:

1. Get certain test suite’s information;

2. Delete a test case.

METHOD: GET

Get certain test suite’s information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites/<suite_name>

METHOD: DELETE

Delete a certain test suite Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/testsuites/<suite_name>

/api/v2/yardstick/projects

Description: This API is used to do some work related to Yardstick test projects. For Euphrates, it supports:

1. Create a Yardstick project;

2. Get all projects;

Which API to call will depend on the parameters.

METHOD: POST

Create a Yardstick project Example:

{
'action': 'create_project',
'args': {

'name': 'project1'
}

}

2.9. Yardstick Restful API 51

Yardstick, Release Latest

METHOD: GET

Get all projects’ information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects

/api/v2/yardstick/projects

Description: This API is used to do some work related to yardstick test projects. For Euphrates, it supports:

1. Get certain project’s information;

2. Delete a project.

METHOD: GET

Get certain project’s information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects/<project_id>

METHOD: DELETE

Delete a certain project Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/projects/<project_id>

/api/v2/yardstick/containers

Description: This API is used to do some work related to Docker containers. For Euphrates, it supports:

1. Create a Grafana Docker container;

2. Create an InfluxDB Docker container;

Which API to call will depend on the parameters.

METHOD: POST

Create a Grafana Docker container Example:

{
'action': 'create_grafana',
'args': {

'environment_id': <environment_id>
}

}

METHOD: POST

Create an InfluxDB Docker container Example:

{
'action': 'create_influxdb',
'args': {

'environment_id': <environment_id>
}

}

52 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

/api/v2/yardstick/containers/<container_id>

Description: This API is used to do some work related to Docker containers. For Euphrates, it supports:

1. Get certain container’s information;

2. Delete a container.

METHOD: GET

Get certain container’s information Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/containers/<container_id>

METHOD: DELETE

Delete a certain container Example:

http://<SERVER IP>:<PORT>/api/v2/yardstick/containers/<container_id>

2.10 Yardstick User Interface

This chapter describes how to generate HTML reports, used to view, store, share or publish test results in table and
graph formats.

The following layouts are available:

• The compact HTML report layout is suitable for testcases producing a few metrics over a short period of time.
All metrics for all timestamps are displayed in the data table and on the graph.

• The dynamic HTML report layout consists of a wider data table, a graph, and a tree that allows selecting the
metrics to be displayed. This layout is suitable for testcases, such as NSB ones, producing a lot of metrics over
a longer period of time.

2.10.1 Commands

To generate the compact HTML report, run:

yardstick report generate <task-ID> <testcase-filename>

To generate the dynamic HTML report, run:

yardstick report generate-nsb <task-ID> <testcase-filename>

2.10.2 Description

1. When the command is triggered, the relevant values for the provided task-id and testcase name are retrieved
from the database (InfluxDB in this particular case).

2. The values are then formatted and provided to the html template to be rendered using Jinja2.

3. Then the rendered template is written into a html file.

The graph is framed with Timestamp on x-axis and output values (differ from testcase to testcase) on y-axis with the
help of Chart.js.

2.10. Yardstick User Interface 53

https://www.influxdata.com/time-series-platform/influxdb/
http://jinja.pocoo.org/docs/2.10/
https://www.chartjs.org/

Yardstick, Release Latest

2.11 Network Services Benchmarking (NSB)

2.11.1 Abstract

This chapter provides an overview of the NSB, a contribution to OPNFV Yardstick from Intel.

2.11.2 Overview

Network Services Benchmarking (NSB) uses the Yardstick framework for performing VNF and NFVI characterisation
in an NFV environment.

For VNF characterisation, NSB will onboard a VNF, source and sink traffic to it via traffic generators, and collect a
variety of key performance indicators (KPI) during VNF execution. The stream of KPI data is stored in a database,
and it is visualized in a performance-visualization dashboard.

For NFVI characterisation, a fixed test VNF, called PROX is used. PROX implements a suite of test cases and visualizes
the output data of the test suite. The PROX test cases implement various execution kernels found in real-world VNFs,
and the output of the test cases provides an indication of the fitness of the infrastructure for running NFV services, in
addition to indicating potential performance optimizations for the NFVI.

NSB extends the Yardstick framework to do VNF characterization in three different execution environments - bare
metal i.e. native Linux environment, standalone virtual environment and managed virtualized environment (e.g. Open-
Stack). It also brings in the capability to interact with external traffic generators, both hardware and software based,
for triggering and validating the traffic according to user defined profiles.

NSB extension includes:

• Generic data models of Network Services, based on ETSI spec ETSI GS NFV-TST001

• Standalone context for VNF testing SRIOV, OVS-DPDK, etc

• Generic VNF configuration models and metrics implemented with Python classes

• Traffic generator features and traffic profiles

– L1-L3 stateless traffic profiles

– L4-L7 state-full traffic profiles

– Tunneling protocol/network overlay support

• Scenarios that handle NSB test cases execution

– NSPerf - scenario that handles generic NSB test case execution (setup and init tg/vnf, trigger traffic on tg,
collect kpi)

– NSPerf-RFC2544 - scenario that allows repeatable triggering of traffic on traffic generators until test case
acceptance criteria is met (for example RFC2544 binary search)

• Test case samples

– Ping

– Trex

– vPE, vCGNAT, vFirewall etc - ipv4 throughput, latency etc

• Traffic generators i.e. Trex, ab/nginx, ixia, iperf, etc

• KPIs for a given use case:

– System agent support for collecting NFVi KPI. This includes:

54 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/display/yardstick
http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_nfv-tst001v010101p.pdf

Yardstick, Release Latest

* CPU statistic

* Memory BW

* OVS-DPDK Stats

– Network KPIs e.g. inpackets, outpackets, thoughput, latency

– VNF KPIs e.g. packet_in, packet_drop, packet_fwd

2.11.3 Architecture

The Network Service (NS) defines a set of Virtual Network Functions (VNF) connected together using NFV infras-
tructure.

The Yardstick NSB extension can support multiple VNFs created by different vendors including traffic generators.
Every VNF being tested has its own data model. The Network service defines a VNF modelling on base of performed
network functionality. The part of the data model is a set of the configuration parameters, number of connection points
used and flavor including core and memory amount.

ETSI defines a Network Service as a set of configurable VNFs working in some NFV Infrastructure connecting each
other using Virtual Links available through Connection Points. The ETSI MANO specification defines a set of man-
agement entities called Network Service Descriptors (NSD) and VNF Descriptors (VNFD) that define real Network
Service. The picture below makes an example how the real Network Operator use-case can map into ETSI Network
service definition.

Network Service framework performs the necessary test steps. It may involve:

• Interacting with traffic generator and providing the inputs on traffic type / packet structure to generate the
required traffic as per the test case. Traffic profiles will be used for this.

• Executing the commands required for the test procedure and analyses the command output for confirming
whether the command got executed correctly or not e.g. as per the test case, run the traffic for the given time
period and wait for the necessary time delay.

• Verify the test result.

• Validate the traffic flow from SUT.

• Fetch the data from SUT and verify the value as per the test case.

• Upload the logs from SUT onto the Test Harness server

• Retrieve the KPI’s provided by particular VNF

Components of Network Service

• Models for Network Service benchmarking: The Network Service benchmarking requires the proper modelling
approach. The NSB provides models using Python files and defining of NSDs and VNFDs.

The benchmark control application being a part of OPNFV Yardstick can call that Python models to instantiate and
configure the VNFs. Depending on infrastructure type (bare-metal or fully virtualized) that calls could be made
directly or using MANO system.

• Traffic generators in NSB: Any benchmark application requires a set of traffic generator and traffic profiles
defining the method in which traffic is generated.

The Network Service benchmarking model extends the Network Service definition with a set of Traffic Generators
(TG) that are treated same way as other VNFs being a part of benchmarked network service. Same as other VNFs the
traffic generator are instantiated and terminated.

2.11. Network Services Benchmarking (NSB) 55

Yardstick, Release Latest

Every traffic generator has own configuration defined as a traffic profile and a set of KPIs supported. The python
models for TG is extended by specific calls to listen and generate traffic.

• The stateless TREX traffic generator: The main traffic generator used as Network Service stimulus is open
source TREX tool.

The TREX tool can generate any kind of stateless traffic.

+--------+ +-------+ +--------+
Trex	--->	VNF	--->	Trex
+--------+ +-------+ +--------+

Supported testcases scenarios:

• Correlated UDP traffic using TREX traffic generator and replay VNF.

– Using different IMIX configuration like pure voice, pure video traffic etc

– Using different number IP flows e.g. 1, 1K, 16K, 64K, 256K, 1M flows

– Using different number of rules configured e.g. 1, 1K, 10K rules

For UDP correlated traffic following Key Performance Indicators are collected for every combination of test case
parameters:

• RFC2544 throughput for various loss rate defined (1% is a default)

KPI Collection

KPI collection is the process of sampling KPIs at multiple intervals to allow for investigation into anomalies during
runtime. Some KPI intervals are adjustable. KPIs are collected from traffic generators and NFVI for the SUT. There
is already some reporting in NSB available, but NSB collects all KPIs for analytics to process.

Below is an example list of basic KPIs:

• Throughput

• Latency

• Packet delay variation

• Maximum establishment rate

• Maximum tear-down rate

• Maximum simultaneous number of sessions

Of course, there can be many other KPIs that will be relevant for a specific NFVI, but in most cases these KPIs are
enough to give you a basic picture of the SUT. NSB also uses collectd in order to collect the KPIs. Currently the
following collectd plug-ins are enabled for NSB testcases:

• Libvirt

• Interface stats

• OvS events

• vSwitch stats

• Huge Pages

• RAM

56 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

• CPU usage

• Intel® PMU

• Intel® RDT

2.11.4 Graphical Overview

NSB Testing with Yardstick framework facilitate performance testing of various VNFs provided.

+-----------+
| | +-------------+
| vPE | -->| TGen Port 0 |
| TestCase | | +-------------+
| | |
+-----------+ +---------------+ +-------+ |

| | ---> | VNF | <--->
+-----------+ | Yardstick | +-------+ |
| Test Case | --> | NSB Testing | |
+-----------+ | | |

| | | |
| +---------------+ |

+-----------+ | +-------------+
| Traffic | -->| TGen Port 1 |
| patterns | +-------------+
+-----------+

Figure 1: Network Service - 2 server configuration

VNFs supported for chracterization

1. CGNAPT - Carrier Grade Network Address and port Translation

2. vFW - Virtual Firewall

3. vACL - Access Control List

4. PROX - Packet pROcessing eXecution engine:

• VNF can act as Drop, Basic Forwarding (no touch), L2 Forwarding (change MAC), GRE encap/decap,
Load balance based on packet fields, Symmetric load balancing

• QinQ encap/decap IPv4/IPv6, ARP, QoS, Routing, Unmpls, Policing, ACL

5. UDP_Replay

2.12 NSB Installation

2.12.1 Abstract

The steps needed to run Yardstick with NSB testing are:

• Install Yardstick (NSB Testing).

• Setup/reference pod.yaml describing Test topology.

• Create/reference the test configuration yaml file.

2.12. NSB Installation 57

Yardstick, Release Latest

• Run the test case.

2.12.2 Prerequisites

Refer to Yardstick Installation for more information on Yardstick prerequisites.

Several prerequisites are needed for Yardstick (VNF testing):

• Python Modules: pyzmq, pika.

• flex

• bison

• build-essential

• automake

• libtool

• librabbitmq-dev

• rabbitmq-server

• collectd

• intel-cmt-cat

Hardware & Software Ingredients

SUT requirements:

Item Description
Memory Min 20GB
NICs 2 x 10G
OS Ubuntu 16.04.3 LTS
kernel 4.4.0-34-generic
DPDK 17.02

Boot and BIOS settings:

Boot
set-
tings

default_hugepagesz=1G hugepagesz=1G hugepages=16 hugepagesz=2M hugepages=2048
isolcpus=1-11,22-33 nohz_full=1-11,22-33 rcu_nocbs=1-11,22-33 iommu=on iommu=pt in-
tel_iommu=on Note: nohz_full and rcu_nocbs is to disable Linux kernel interrupts

BIOS CPU Power and Performance Policy <Performance> CPU C-state Disabled CPU P-state Dis-
abled Enhanced Intel® Speedstep® Tech Disabl Hyper-Threading Technology (If supported)
Enabled Virtualization Techology Enabled Intel(R) VT for Direct I/O Enabled Coherency En-
abled Turbo Boost Disabled

2.12.3 Install Yardstick (NSB Testing)

Yardstick with NSB can be installed using nsb_setup.sh. The nsb_setup.sh allows to:

1. Install Yardstick in specified mode: bare metal or container. Refer Yardstick Installation.

58 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2. Install package dependencies on remote servers used as traffic generator or sample VNF. Install DPDK,
sample VNFs, TREX, collectd. Add such servers to install-inventory.ini file to either
yardstick-standalone or yardstick-baremetal server groups. It configures IOMMU, hugepages,
open file limits, CPU isolation, etc.

3. Build VM image either nsb or normal. The nsb VM image is used to run Yardstick sample VNF tests, like vFW,
vACL, vCGNAPT, etc. The normal VM image is used to run Yardstick ping tests in OpenStack context.

4. Add nsb or normal VM image to OpenStack together with OpenStack variables.

Firstly, configure the network proxy, either using the environment variables or setting the global environment file.

Set environment in the file:

http_proxy='http://proxy.company.com:port'
https_proxy='http://proxy.company.com:port'

Set environment variables:

export http_proxy='http://proxy.company.com:port'
export https_proxy='http://proxy.company.com:port'

Download the source code and check out the latest stable branch:

git clone https://gerrit.opnfv.org/gerrit/yardstick
cd yardstick
Switch to latest stable branch
git checkout stable/gambia

Modify the Yardstick installation inventory used by Ansible:

cat ./ansible/install-inventory.ini
[jumphost]
localhost ansible_connection=local

section below is only due backward compatibility.
it will be removed later
[yardstick:children]
jumphost

[yardstick-baremetal]
baremetal ansible_host=192.168.2.51 ansible_connection=ssh

[yardstick-standalone]
standalone ansible_host=192.168.2.52 ansible_connection=ssh

[all:vars]
Uncomment credentials below if needed

ansible_user=root
ansible_ssh_pass=root

ansible_ssh_private_key_file=/root/.ssh/id_rsa
When IMG_PROPERTY is passed neither normal nor nsb set
"path_to_vm=/path/to/image" to add it to OpenStack
path_to_img=/tmp/workspace/yardstick-image.img

List of CPUs to be isolated (not used by default)
Grub line will be extended with:
"isolcpus=<ISOL_CPUS> nohz=on nohz_full=<ISOL_CPUS> rcu_nocbs=1<ISOL_CPUS>"
ISOL_CPUS=2-27,30-55 # physical cpu's for all NUMA nodes, four cpu's reserved

2.12. NSB Installation 59

Yardstick, Release Latest

Warning: Before running nsb_setup.sh make sure python is installed on servers added to
yardstick-standalone and yardstick-baremetal groups.

Note: SSH access without password needs to be configured for all your nodes defined in install-inventory.
ini file. If you want to use password authentication you need to install sshpass:

sudo -EH apt-get install sshpass

Note: A VM image built by other means than Yardstick can be added to OpenStack. Uncomment and set correct path
to the VM image in the install-inventory.ini file:

path_to_img=/tmp/workspace/yardstick-image.img

Note: CPU isolation can be applied to the remote servers, like: ISOL_CPUS=2-27,30-55. Uncomment and modify
accordingly in install-inventory.ini file.

By default nsb_setup.sh pulls Yardstick image based on Ubuntu 16.04 from docker hub and starts container,
builds NSB VM image based on Ubuntu 16.04, installs packages to the servers given in yardstick-standalone
and yardstick-baremetal host groups.

To pull Yardstick built based on Ubuntu 18 run:

./nsb_setup.sh -i opnfv/yardstick-ubuntu-18.04:latest

To change default behavior modify parameters for install.yaml in nsb_setup.sh file.

Refer chapter Yardstick Installation for more details on install.yaml parameters.

To execute an installation for a BareMetal or a Standalone context:

./nsb_setup.sh

To execute an installation for an OpenStack context:

./nsb_setup.sh <path to admin-openrc.sh>

Note: Yardstick may not be operational after distributive linux kernel update if it has been installed before. Run
nsb_setup.sh again to resolve this.

Warning: The Yardstick VM image (NSB or normal) cannot be built inside a VM.

Warning: The nsb_setup.sh configures huge pages, CPU isolation, IOMMU on the grub. Re-
boot of the servers from yardstick-standalone or yardstick-baremetal groups in the file
install-inventory.ini is required to apply those changes.

60 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

The above commands will set up Docker with the latest Yardstick code. To execute:

docker exec -it yardstick bash

Note: It may be needed to configure tty in docker container to extend commandline character length, for example:

stty size rows 58 cols 234

It will also automatically download all the packages needed for NSB Testing setup. Refer chapter Yardstick Installation
for more on Docker: Install Yardstick using Docker (first option) (recommended)

Bare Metal context example

Let’s assume there are three servers acting as TG, sample VNF DUT and jump host.

Perform following steps to install NSB:

1. Clone Yardstick repo to jump host.

2. Add TG and DUT servers to yardstick-baremetal group in install-inventory.ini file to install
NSB and dependencies. Install python on servers.

3. Start deployment using docker image based on Ubuntu 16:

./nsb_setup.sh

4. Reboot bare metal servers.

5. Enter to yardstick container and modify pod yaml file and run tests.

Standalone context example for Ubuntu 18

Let’s assume there are three servers acting as TG, sample VNF DUT and jump host. Ubuntu 18 is installed on all
servers.

Perform following steps to install NSB:

1. Clone Yardstick repo to jump host.

2. Add TG server to yardstick-baremetal group in install-inventory.ini file to install NSB and
dependencies. Add server where VM with sample VNF will be deployed to yardstick-standalone
group in install-inventory.ini file. Target VM image named yardstick-nsb-image.img will
be placed to /var/lib/libvirt/images/. Install python on servers.

3. Modify nsb_setup.sh on jump host:

ansible-playbook \
-e IMAGE_PROPERTY='nsb' \
-e OS_RELEASE='bionic' \
-e INSTALLATION_MODE='container_pull' \
-e YARD_IMAGE_ARCH='amd64' ${extra_args} \
-i install-inventory.ini install.yaml

4. Start deployment with Yardstick docker images based on Ubuntu 18:

./nsb_setup.sh -i opnfv/yardstick-ubuntu-18.04:latest -o <openrc_file>

5. Reboot servers.

2.12. NSB Installation 61

Yardstick, Release Latest

6. Enter to yardstick container and modify pod yaml file and run tests.

2.12.4 System Topology

+----------+ +----------+
	(0)----->(0)	
TG1		DUT
	(1)<-----(1)	
+----------+ +----------+
trafficgen_0 vnf

2.12.5 Environment parameters and credentials

Configure yardstick.conf

If you did not run yardstick env influxdb inside the container to generate yardstick.conf, then create
the config file manually (run inside the container):

cp ./etc/yardstick/yardstick.conf.sample /etc/yardstick/yardstick.conf
vi /etc/yardstick/yardstick.conf

Add trex_path, trex_client_lib and bin_path to the nsb section:

[DEFAULT]
debug = True
dispatcher = influxdb

[dispatcher_influxdb]
timeout = 5
target = http://{YOUR_IP_HERE}:8086
db_name = yardstick
username = root
password = root

[nsb]
trex_path=/opt/nsb_bin/trex/scripts
bin_path=/opt/nsb_bin
trex_client_lib=/opt/nsb_bin/trex_client/stl

2.12.6 Run Yardstick - Network Service Testcases

NS testing - using yardstick CLI

See Yardstick Installation

Connect to the Yardstick container:

docker exec -it yardstick /bin/bash

If you’re running heat testcases and nsb_setup.sh was not used:

62 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

source /etc/yardstick/openstack.creds

In addition to the above, you need to set the EXTERNAL_NETWORK for OpenStack:

export EXTERNAL_NETWORK="<openstack public network>"

Finally, you should be able to run the testcase:

yardstick --debug task start yardstick/samples/vnf_samples/nsut/<vnf>/<test case>

2.12.7 Network Service Benchmarking - Bare-Metal

Bare-Metal Config pod.yaml describing Topology

Bare-Metal 2-Node setup

+----------+ +----------+
	(0)----->(0)	
TG1		DUT
	(n)<-----(n)	
+----------+ +----------+
trafficgen_0 vnf

Bare-Metal 3-Node setup - Correlated Traffic

+----------+ +----------+ +------------+
	(0)----->(0)			UDP
TG1		DUT		Replay
			(1)<---->(0)	
+----------+ +----------+ +------------+
trafficgen_0 vnf trafficgen_1

Bare-Metal Config pod.yaml

Before executing Yardstick test cases, make sure that pod.yaml reflects the topology and update all the required
fields.:

cp <yardstick>/etc/yardstick/nodes/pod.yaml.nsb.sample /etc/yardstick/nodes/pod.yaml

nodes:
-

name: trafficgen_0
role: TrafficGen
ip: 1.1.1.1
user: root

(continues on next page)

2.12. NSB Installation 63

Yardstick, Release Latest

(continued from previous page)

password: r00t
interfaces:

xe0: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.0"
driver: i40e # default kernel driver
dpdk_port_num: 0
local_ip: "152.16.100.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:01"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.1"
driver: i40e # default kernel driver
dpdk_port_num: 1
local_ip: "152.16.40.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:02"

-
name: vnf
role: vnf
ip: 1.1.1.2
user: root
password: r00t
host: 1.1.1.2 #BM - host == ip, virtualized env - Host - compute node
interfaces:

xe0: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.0"
driver: i40e # default kernel driver
dpdk_port_num: 0
local_ip: "152.16.100.19"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:03"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.1"
driver: i40e # default kernel driver
dpdk_port_num: 1
local_ip: "152.16.40.19"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:04"

routing_table:
- network: "152.16.100.20"

netmask: "255.255.255.0"
gateway: "152.16.100.20"
if: "xe0"

- network: "152.16.40.20"
netmask: "255.255.255.0"
gateway: "152.16.40.20"
if: "xe1"

nd_route_tbl:
- network: "0064:ff9b:0:0:0:0:9810:6414"

netmask: "112"
gateway: "0064:ff9b:0:0:0:0:9810:6414"
if: "xe0"

- network: "0064:ff9b:0:0:0:0:9810:2814"
netmask: "112"
gateway: "0064:ff9b:0:0:0:0:9810:2814"

(continues on next page)

64 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

if: "xe1"

2.12.8 Standalone Virtualization

VM can be deployed manually or by Yardstick. If parameter vm_deploy is set to True VM will be deployed by
Yardstick. Otherwise VM should be deployed manually. Test case example, context section:

contexts:
...
vm_deploy: True

SR-IOV

SR-IOV Pre-requisites

On Host, where VM is created:

1. Create and configure a bridge named br-int for VM to connect to external network. Currently this can
be done using VXLAN tunnel.

Execute the following on host, where VM is created:

ip link add type vxlan remote <Jumphost IP> local <DUT IP> id <ID: 10>
→˓dstport 4789
brctl addbr br-int
brctl addif br-int vxlan0
ip link set dev vxlan0 up
ip addr add <IP#1, like: 172.20.2.1/24> dev br-int
ip link set dev br-int up

Note: You may need to add extra rules to iptable to forward traffic.

iptables -A FORWARD -i br-int -s <network ip address>/<netmask> -j ACCEPT
iptables -A FORWARD -o br-int -d <network ip address>/<netmask> -j ACCEPT

Execute the following on a jump host:

ip link add type vxlan remote <DUT IP> local <Jumphost IP> id <ID: 10>
→˓dstport 4789
ip addr add <IP#2, like: 172.20.2.2/24> dev vxlan0
ip link set dev vxlan0 up

Note: Host and jump host are different baremetal servers.

2. Modify test case management CIDR. IP addresses IP#1, IP#2 and CIDR must be in the same network.

servers:
vnf_0:
network_ports:

(continues on next page)

2.12. NSB Installation 65

Yardstick, Release Latest

(continued from previous page)

mgmt:
cidr: '1.1.1.7/24'

3. Build guest image for VNF to run. Most of the sample test cases in Yardstick are using a guest image
called yardstick-nsb-image which deviates from an Ubuntu Cloud Server image Yardstick has a
tool for building this custom image with SampleVNF. It is necessary to have sudo rights to use this tool.

Also you may need to install several additional packages to use this tool, by following the commands
below:

sudo apt-get update && sudo apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where Yardstick is installed:

export YARD_IMG_ARCH='amd64'
sudo echo "Defaults env_keep += \'YARD_IMG_ARCH\'" >> /etc/sudoers

For instructions on generating a cloud image using Ansible, refer to Yardstick Installation.

Note: VM should be build with static IP and be accessible from the Yardstick host.

SR-IOV Config pod.yaml describing Topology

SR-IOV 2-Node setup

+--------------------+
| |
| |
| DUT |
| (VNF) |
| |
+--------------------+
| VF NIC | | VF NIC |
+--------+ +--------+

^ ^
| |
| |

+----------+ +-------------------------+
		^ ^		
	(0)<----->(0)	------ SUT		
TG1				
	(n)<----->(n)	-----------------		
+----------+ +-------------------------+
trafficgen_0 host

SR-IOV 3-Node setup - Correlated Traffic

66 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

+--------------------+
| |
| |
| DUT |
| (VNF) |
| |
+--------------------+
| VF NIC | | VF NIC |
+--------+ +--------+

^ ^
| |
| |

+----------+ +---------------------+ +--------------+
		^ ^				
	(0)<----->(0)	-----			TG2	
TG1		SUT			(UDP Replay)	
	(n)<----->(n)	-----	(n)<-->(n)			
+----------+ +---------------------+ +--------------+
trafficgen_0 host trafficgen_1

Before executing Yardstick test cases, make sure that pod.yaml reflects the topology and update all the required
fields.

cp <yardstick>/etc/yardstick/nodes/standalone/trex_bm.yaml.sample /etc/yardstick/
→˓nodes/standalone/pod_trex.yaml
cp <yardstick>/etc/yardstick/nodes/standalone/host_sriov.yaml /etc/yardstick/nodes/
→˓standalone/host_sriov.yaml

Note: Update all the required fields like ip, user, password, pcis, etc. . .

SR-IOV Config pod_trex.yaml

nodes:
-

name: trafficgen_0
role: TrafficGen
ip: 1.1.1.1
user: root
password: r00t
key_filename: /root/.ssh/id_rsa
interfaces:

xe0: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.0"
driver: i40e # default kernel driver
dpdk_port_num: 0
local_ip: "152.16.100.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:01"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.1"
driver: i40e # default kernel driver

(continues on next page)

2.12. NSB Installation 67

Yardstick, Release Latest

(continued from previous page)

dpdk_port_num: 1
local_ip: "152.16.40.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:02"

SR-IOV Config host_sriov.yaml

nodes:
-

name: sriov
role: Sriov
ip: 192.168.100.101
user: ""
password: ""

SR-IOV testcase update: <yardstick>/samples/vnf_samples/nsut/vfw/
tc_sriov_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

Update contexts section

contexts:
- name: yardstick
type: Node
file: /etc/yardstick/nodes/standalone/pod_trex.yaml

- type: StandaloneSriov
file: /etc/yardstick/nodes/standalone/host_sriov.yaml
name: yardstick
vm_deploy: True
flavor:

images: "/var/lib/libvirt/images/ubuntu.qcow2"
ram: 4096
extra_specs:

hw:cpu_sockets: 1
hw:cpu_cores: 6
hw:cpu_threads: 2

user: "" # update VM username
password: "" # update password

servers:
vnf_0:

network_ports:
mgmt:

cidr: '1.1.1.61/24' # Update VM IP address, if static, <ip>/<mask> or if
→˓dynamic, <start of ip>/<mask>

xe0:
- uplink_0

xe1:
- downlink_0

networks:
uplink_0:

phy_port: "0000:05:00.0"
vpci: "0000:00:07.0"
cidr: '152.16.100.10/24'

(continues on next page)

68 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

gateway_ip: '152.16.100.20'
downlink_0:

phy_port: "0000:05:00.1"
vpci: "0000:00:08.0"
cidr: '152.16.40.10/24'
gateway_ip: '152.16.100.20'

SRIOV configuration options

The only configuration option available for SRIOV is vpci. It is used as base address for VFs that are created during
SRIOV test case execution.

networks:
uplink_0:
phy_port: "0000:05:00.0"
vpci: "0000:00:07.0"
cidr: '152.16.100.10/24'
gateway_ip: '152.16.100.20'

downlink_0:
phy_port: "0000:05:00.1"
vpci: "0000:00:08.0"
cidr: '152.16.40.10/24'
gateway_ip: '152.16.100.20'

VM image properties

VM image properties example under flavor section:

flavor:
images: <path>
ram: 8192
extra_specs:

machine_type: 'pc-i440fx-xenial'
hw:cpu_sockets: 1
hw:cpu_cores: 6
hw:cpu_threads: 2
hw_socket: 0
cputune: |
<cputune>
<vcpupin vcpu="0" cpuset="7"/>
<vcpupin vcpu="1" cpuset="8"/>
...
<vcpupin vcpu="11" cpuset="18"/>
<emulatorpin cpuset="11"/>

</cputune>
user: ""
password: ""

VM image properties description:

2.12. NSB Installation 69

Yardstick, Release Latest

Parameters Detail
images

Path to the VM image generated by
nsb_setup.sh

Default path is
/var/lib/libvirt/images/

Default file name
yardstick-nsb-image.img or
yardstick-image.img

ram

Amount of RAM to be used for VM
Default is 4096 MB

hw:cpu_sockets

Number of sockets provided to the guest VM
Default is 1

hw:cpu_cores

Number of cores provided to the guest VM
Default is 2

hw:cpu_threads

Number of threads provided to the guest VM
Default is 2

hw_socket

Generate vcpu cpuset from given HW socket
Default is 0

cputune

Maps virtual cpu with logical cpu

machine_type

Machine type to be emulated in VM
Default is ‘pc-i440fx-xenial’

user

User name to access the VM
Default value is ‘root’

password

Password to access the VM

70 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

OVS-DPDK

OVS-DPDK Pre-requisites

On Host, where VM is created:

1. Create and configure a bridge named br-int for VM to connect to external network. Currently this can
be done using VXLAN tunnel.

Execute the following on host, where VM is created:

ip link add type vxlan remote <Jumphost IP> local <DUT IP> id <ID: 10>
→˓dstport 4789
brctl addbr br-int
brctl addif br-int vxlan0
ip link set dev vxlan0 up
ip addr add <IP#1, like: 172.20.2.1/24> dev br-int
ip link set dev br-int up

Note: May be needed to add extra rules to iptable to forward traffic.

iptables -A FORWARD -i br-int -s <network ip address>/<netmask> -j ACCEPT
iptables -A FORWARD -o br-int -d <network ip address>/<netmask> -j ACCEPT

Execute the following on a jump host:

ip link add type vxlan remote <DUT IP> local <Jumphost IP> id <ID: 10>
→˓dstport 4789
ip addr add <IP#2, like: 172.20.2.2/24> dev vxlan0
ip link set dev vxlan0 up

Note: Host and jump host are different baremetal servers.

2. Modify test case management CIDR. IP addresses IP#1, IP#2 and CIDR must be in the same network.

servers:
vnf_0:
network_ports:
mgmt:

cidr: '1.1.1.7/24'

3. Build guest image for VNF to run. Most of the sample test cases in Yardstick are using a guest image
called yardstick-nsb-image which deviates from an Ubuntu Cloud Server image Yardstick has a
tool for building this custom image with SampleVNF. It is necessary to have sudo rights to use this tool.

You may need to install several additional packages to use this tool, by following the commands
below:

sudo apt-get update && sudo apt-get install -y qemu-utils kpartx

This image can be built using the following command in the directory where Yardstick is installed:

2.12. NSB Installation 71

Yardstick, Release Latest

export YARD_IMG_ARCH='amd64'
sudo echo "Defaults env_keep += \'YARD_IMG_ARCH\'" >> /etc/sudoers
sudo tools/yardstick-img-dpdk-modify tools/ubuntu-server-cloudimg-
→˓samplevnf-modify.sh

for more details refer to chapter Yardstick Installation

Note: VM should be build with static IP and should be accessible from yardstick host.

4. OVS & DPDK version:

• OVS 2.7 and DPDK 16.11.1 above version is supported

Refer setup instructions at OVS-DPDK on host.

OVS-DPDK Config pod.yaml describing Topology

OVS-DPDK 2-Node setup

+--------------------+
| |
| |
| DUT |
| (VNF) |
| |
+--------------------+
| virtio | | virtio |
+--------+ +--------+

^ ^
| |
| |

+--------+ +--------+
| vHOST0 | | vHOST1 |

+----------+ +-------------------------+
		^ ^		
	(0)<----->(0)	------		
TG1		SUT		
		(ovs-dpdk)		
	(n)<----->(n)	------------------		
+----------+ +-------------------------+
trafficgen_0 host

OVS-DPDK 3-Node setup - Correlated Traffic

+--------------------+
| |
| |
| DUT |
| (VNF) |
| |
+--------------------+

(continues on next page)

72 Chapter 2. Yardstick User Guide

http://docs.openvswitch.org/en/latest/intro/install/dpdk/

Yardstick, Release Latest

(continued from previous page)

| virtio | | virtio |
+--------+ +--------+

^ ^
| |
| |

+--------+ +--------+
| vHOST0 | | vHOST1 |

+----------+ +-------------------------+ +------------+
		^ ^				
	(0)<----->(0)	------			TG2	
TG1		SUT			(UDP Replay)	
		(ovs-dpdk)				
	(n)<----->(n)	------	(n)<-->(n)			
+----------+ +-------------------------+ +------------+
trafficgen_0 host trafficgen_1

Before executing Yardstick test cases, make sure that the pod.yaml reflects the topology and update all the required
fields:

cp <yardstick>/etc/yardstick/nodes/standalone/trex_bm.yaml.sample /etc/yardstick/
→˓nodes/standalone/pod_trex.yaml
cp <yardstick>/etc/yardstick/nodes/standalone/host_ovs.yaml /etc/yardstick/nodes/
→˓standalone/host_ovs.yaml

Note: Update all the required fields like ip, user, password, pcis, etc. . .

OVS-DPDK Config pod_trex.yaml

nodes:
-

name: trafficgen_0
role: TrafficGen
ip: 1.1.1.1
user: root
password: r00t
interfaces:

xe0: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.0"
driver: i40e # default kernel driver
dpdk_port_num: 0
local_ip: "152.16.100.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:01"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:07:00.1"
driver: i40e # default kernel driver
dpdk_port_num: 1
local_ip: "152.16.40.20"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:02"

2.12. NSB Installation 73

Yardstick, Release Latest

OVS-DPDK Config host_ovs.yaml

nodes:
-

name: ovs_dpdk
role: OvsDpdk
ip: 192.168.100.101
user: ""
password: ""

ovs_dpdk testcase update: <yardstick>/samples/vnf_samples/nsut/vfw/
tc_ovs_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

Update contexts section

contexts:
- name: yardstick
type: Node
file: /etc/yardstick/nodes/standalone/pod_trex.yaml

- type: StandaloneOvsDpdk
name: yardstick
file: /etc/yardstick/nodes/standalone/pod_ovs.yaml
vm_deploy: True
ovs_properties:

version:
ovs: 2.7.0
dpdk: 16.11.1

pmd_threads: 2
ram:

socket_0: 2048
socket_1: 2048

queues: 4
vpath: "/usr/local"

flavor:
images: "/var/lib/libvirt/images/ubuntu.qcow2"
ram: 4096
extra_specs:

hw:cpu_sockets: 1
hw:cpu_cores: 6
hw:cpu_threads: 2

user: "" # update VM username
password: "" # update password

servers:
vnf_0:

network_ports:
mgmt:

cidr: '1.1.1.61/24' # Update VM IP address, if static, <ip>/<mask> or if
→˓dynamic, <start of ip>/<mask>

xe0:
- uplink_0

xe1:
- downlink_0

networks:
uplink_0:

(continues on next page)

74 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

phy_port: "0000:05:00.0"
vpci: "0000:00:07.0"
cidr: '152.16.100.10/24'
gateway_ip: '152.16.100.20'

downlink_0:
phy_port: "0000:05:00.1"
vpci: "0000:00:08.0"
cidr: '152.16.40.10/24'
gateway_ip: '152.16.100.20'

OVS-DPDK configuration options

There are number of configuration options available for OVS-DPDK context in test case. Mostly they are used for
performance tuning.

OVS-DPDK properties:

OVS-DPDK properties example under ovs_properties section:

ovs_properties:
version:

ovs: 2.8.1
dpdk: 17.05.2

pmd_threads: 4
pmd_cpu_mask: "0x3c"
ram:
socket_0: 2048
socket_1: 2048

queues: 2
vpath: "/usr/local"
max_idle: 30000
lcore_mask: 0x02
dpdk_pmd-rxq-affinity:

0: "0:2,1:2"
1: "0:2,1:2"
2: "0:3,1:3"
3: "0:3,1:3"

vhost_pmd-rxq-affinity:
0: "0:3,1:3"
1: "0:3,1:3"
2: "0:4,1:4"
3: "0:4,1:4"

OVS-DPDK properties description:

2.12. NSB Installation 75

Yardstick, Release Latest

Parameters Detail
version

Version of OVS and DPDK to be installed
There is a relation between OVS and DPDK
version which can be found at
OVS-DPDK-versions
By default OVS: 2.6.0, DPDK: 16.07.2

lcore_mask

Core bitmask used during DPDK initialization
where the non-datapath OVS-DPDK threads
such as handler and revalidator threads run

pmd_cpu_mask

Core bitmask that sets which cores are used by
OVS-DPDK for datapath packet processing

pmd_threads

Number of PMD threads used by OVS-DPDK
for datapath
This core mask is evaluated in Yardstick
It will be used if pmd_cpu_mask is not given
Default is 2

ram

Amount of RAM to be used for each socket, MB
Default is 2048 MB

queues

Number of RX queues used for DPDK physical
interface

dpdk_pmd-rxq-affinity

RX queue assignment to PMD threads for DPDK
e.g.: <port number> : <queue-id>:<core-id>

vhost_pmd-rxq-affinity

RX queue assignment to PMD threads for vhost
e.g.: <port number> : <queue-id>:<core-id>

vpath

User path for openvswitch files
Default is /usr/local

max_idle

The maximum time that idle flows will remain
cached in the datapath, ms

76 Chapter 2. Yardstick User Guide

http://docs.openvswitch.org/en/latest/faq/releases/

Yardstick, Release Latest

VM image properties

VM image properties are same as for SRIOV VM image properties.

2.12.9 OpenStack with SR-IOV support

This section describes how to run a Sample VNF test case, using Heat context, with SR-IOV. It also covers how to
install OpenStack in Ubuntu 16.04, using DevStack, with SR-IOV support.

Single node OpenStack with external TG

+----------------------------+
|OpenStack(DevStack) |
| |
| +--------------------+ |
	sample-VNF VM	
	DUT	
	(VNF)	
+--------+ +--------+		
	VF NIC	
+-----+--+--+----+---+		
^ ^		

+----------+ +---------+----------+-------+
		VF0 VF1		
		^ ^		
			SUT	
TG	(PF0)<----->(PF0) +---------+			
	(PF1)<----->(PF1) +--------------------+			
+----------+ +----------------------------+
trafficgen_0 host

Host pre-configuration

Warning: The following configuration requires sudo access to the system. Make sure that your user have the
access.

Enable the Intel VT-d or AMD-Vi extension in the BIOS. Some system manufacturers disable this extension by default.

Activate the Intel VT-d or AMD-Vi extension in the kernel by modifying the GRUB config file /etc/default/
grub.

For the Intel platform:

...
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"
...

2.12. NSB Installation 77

Yardstick, Release Latest

For the AMD platform:

...
GRUB_CMDLINE_LINUX_DEFAULT="amd_iommu=on"
...

Update the grub configuration file and restart the system:

Warning: The following command will reboot the system.

sudo update-grub
sudo reboot

Make sure the extension has been enabled:

sudo journalctl -b 0 | grep -e IOMMU -e DMAR

Feb 06 14:50:14 hostname kernel: ACPI: DMAR 0x000000006C406000 0001E0 (v01 INTEL
→˓S2600WF 00000001 INTL 20091013)
Feb 06 14:50:14 hostname kernel: DMAR: IOMMU enabled
Feb 06 14:50:14 hostname kernel: DMAR: Host address width 46
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000d37fc000 flags: 0x0
Feb 06 14:50:14 hostname kernel: DMAR: dmar0: reg_base_addr d37fc000 ver 1:0 cap
→˓8d2078c106f0466 ecap f020de
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000e0ffc000 flags: 0x0
Feb 06 14:50:14 hostname kernel: DMAR: dmar1: reg_base_addr e0ffc000 ver 1:0 cap
→˓8d2078c106f0466 ecap f020de
Feb 06 14:50:14 hostname kernel: DMAR: DRHD base: 0x000000ee7fc000 flags: 0x0

Setup system proxy (if needed). Add the following configuration into the /etc/environment file:

Note: The proxy server name/port and IPs should be changed according to actual/current proxy configuration in the
lab.

export http_proxy=http://proxy.company.com:port
export https_proxy=http://proxy.company.com:port
export ftp_proxy=http://proxy.company.com:port
export no_proxy=localhost,127.0.0.1,company.com,<IP-OF-HOST1>,<IP-OF-HOST2>,...
export NO_PROXY=localhost,127.0.0.1,company.com,<IP-OF-HOST1>,<IP-OF-HOST2>,...

Upgrade the system:

sudo -EH apt-get update
sudo -EH apt-get upgrade
sudo -EH apt-get dist-upgrade

Install dependencies needed for DevStack

sudo -EH apt-get install python python-dev python-pip

Setup SR-IOV ports on the host:

Note: The enp24s0f0, enp24s0f1 are physical function (PF) interfaces on a host and enp24s0f3 is a public
interface used in OpenStack, so the interface names should be changed according to the HW environment used for

78 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

testing.

sudo ip link set dev enp24s0f0 up
sudo ip link set dev enp24s0f1 up
sudo ip link set dev enp24s0f3 up

Create VFs on PF
echo 2 | sudo tee /sys/class/net/enp24s0f0/device/sriov_numvfs
echo 2 | sudo tee /sys/class/net/enp24s0f1/device/sriov_numvfs

DevStack installation

If you want to try out NSB, but don’t have OpenStack set-up, you can use Devstack to install OpenStack on a host.
Please note, that the stable/pike branch of devstack repo should be used during the installation. The required
local.conf configuration file is described below.

DevStack configuration file:

Note: Update the devstack configuration file by replacing angluar brackets with a short description inside.

Note: Use lspci | grep Ether & lspci -n | grep <PCI ADDRESS> commands to get device and
vendor id of the virtual function (VF).

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
ADMIN_PASSWORD=password
MYSQL_PASSWORD=$ADMIN_PASSWORD
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
HORIZON_PASSWORD=$ADMIN_PASSWORD

Internet access.
RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Services
disable_service n-net
ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-sriov-agt

Heat
enable_plugin heat https://git.openstack.org/openstack/heat stable/pike

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

Neutron Options
FLOATING_RANGE=<RANGE_IN_THE_PUBLIC_INTERFACE_NETWORK>
Q_FLOATING_ALLOCATION_POOL=start=<START_IP_ADDRESS>,end=<END_IP_ADDRESS>
PUBLIC_NETWORK_GATEWAY=<PUBLIC_NETWORK_GATEWAY>
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

(continues on next page)

2.12. NSB Installation 79

https://docs.openstack.org/devstack/pike/\T1\textgreater {}

Yardstick, Release Latest

(continued from previous page)

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
Q_USE_PROVIDERNET_FOR_PUBLIC=True
OVS_PHYSICAL_BRIDGE=br-ex
OVS_BRIDGE_MAPPINGS=public:br-ex
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>
PHYSICAL_NETWORK=physnet1,physnet2

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,
→˓ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet2\\" }

[filter_scheduler]
enabled_filters = RetryFilter,AvailabilityZoneFilter,RamFilter,DiskFilter,
→˓ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter,
→˓ServerGroupAntiAffinityFilter,ServerGroupAffinityFilter,SameHostFilter

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual
→˓Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

Start the devstack installation on a host.

TG host configuration

Yardstick automatically installs and configures Trex traffic generator on TG host based on provided POD file (see
below). Anyway, it’s recommended to check the compatibility of the installed NIC on the TG server with software
Trex using the manual.

Run the Sample VNF test case

There is an example of Sample VNF test case ready to be executed in an Open-
Stack environment with SR-IOV support: samples/vnf_samples/nsut/vfw/
tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_trex.yaml.

Install Yardstick using Install Yardstick (NSB Testing) steps for OpenStack context.

80 Chapter 2. Yardstick User Guide

https://trex-tgn.cisco.com/trex/doc/trex_manual.html

Yardstick, Release Latest

Create pod file for TG in the yardstick repo folder located in the yardstick container:

Note: The ip, user, password and vpci fields show be changed according to HW environment used for the
testing. Use lshw -c network -businfo command to get the PF PCI address for vpci field.

nodes:
-

name: trafficgen_1
role: tg__0
ip: <TG-HOST-IP>
user: <TG-USER>
password: <TG-PASS>
interfaces:

xe0: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:18:00.0"
driver: i40e # default kernel driver
dpdk_port_num: 0
local_ip: "10.1.1.150"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:01"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "0000:18:00.1"
driver: i40e # default kernel driver
dpdk_port_num: 1
local_ip: "10.1.1.151"
netmask: "255.255.255.0"
local_mac: "00:00:00:00:00:02"

Run the Sample vFW RFC2544 SR-IOV TC (samples/vnf_samples/nsut/vfw/
tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_64B_trex.yaml) in the heat context
using steps described in NS testing - using yardstick CLI section.

Multi node OpenStack TG and VNF setup (two nodes)

+----------------------------+ +----------------------------+
OpenStack(DevStack)		OpenStack(DevStack)								
+--------------------+		+--------------------+								
	sample-VNF VM				sample-VNF VM					
	TG				DUT					
	trafficgen_0				(VNF)					
+--------+ +--------+		+--------+ +--------+								
	VF NIC		VF NIC				VF NIC		VF NIC	
+----+---+--+----+---+		+-----+--+--+----+---+								
^ ^		^ ^								
+--------+-----------+-------+ +---------+----------+-------+										
VF0 VF1		VF0 VF1								
^ ^		^ ^								
	SUT2				SUT1					
	+-------+ (PF0)<----->(PF0) +---------+									

(continues on next page)

2.12. NSB Installation 81

Yardstick, Release Latest

(continued from previous page)

| +-------------------+ (PF1)<----->(PF1) +--------------------+ |
| | | |
+----------------------------+ +----------------------------+

host2 (compute) host1 (controller)

Controller/Compute pre-configuration

Pre-configuration of the controller and compute hosts are the same as described in Host pre-configuration section.

DevStack configuration

A reference local.conf for deploying OpenStack in a multi-host environment using Devstack is shown in this
section. The stable/pike branch of devstack repo should be used during the installation.

Note: Update the devstack configuration files by replacing angluar brackets with a short description inside.

Note: Use lspci | grep Ether & lspci -n | grep <PCI ADDRESS> commands to get device and
vendor id of the virtual function (VF).

DevStack configuration file for controller host:

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
ADMIN_PASSWORD=password
MYSQL_PASSWORD=$ADMIN_PASSWORD
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
HORIZON_PASSWORD=$ADMIN_PASSWORD
Controller node
SERVICE_HOST=$HOST_IP
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292

Internet access.
RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Services
disable_service n-net
ENABLED_SERVICES+=,q-svc,q-dhcp,q-meta,q-agt,q-sriov-agt

Heat
enable_plugin heat https://git.openstack.org/openstack/heat stable/pike

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

(continues on next page)

82 Chapter 2. Yardstick User Guide

https://docs.openstack.org/devstack/pike/\T1\textgreater {}

Yardstick, Release Latest

(continued from previous page)

Neutron Options
FLOATING_RANGE=<RANGE_IN_THE_PUBLIC_INTERFACE_NETWORK>
Q_FLOATING_ALLOCATION_POOL=start=<START_IP_ADDRESS>,end=<END_IP_ADDRESS>
PUBLIC_NETWORK_GATEWAY=<PUBLIC_NETWORK_GATEWAY>
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
Q_USE_PROVIDERNET_FOR_PUBLIC=True
OVS_PHYSICAL_BRIDGE=br-ex
OVS_BRIDGE_MAPPINGS=public:br-ex
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>
PHYSICAL_NETWORK=physnet1,physnet2

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,
→˓ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet2\\" }

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual
→˓Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

DevStack configuration file for compute host:

[[local|localrc]]
HOST_IP=<HOST_IP_ADDRESS>
MYSQL_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
ADMIN_PASSWORD=password
SERVICE_PASSWORD=password
HORIZON_PASSWORD=password
Controller node
SERVICE_HOST=<CONTROLLER_IP_ADDRESS>
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST
GLANCE_HOSTPORT=$SERVICE_HOST:9292

Internet access.
(continues on next page)

2.12. NSB Installation 83

Yardstick, Release Latest

(continued from previous page)

RECLONE=False
PIP_UPGRADE=True
IP_VERSION=4

Neutron
enable_plugin neutron https://git.openstack.org/openstack/neutron.git stable/pike

Services
ENABLED_SERVICES=n-cpu,rabbit,q-agt,placement-api,q-sriov-agt

Neutron Options
PUBLIC_INTERFACE=<PUBLIC INTERFACE>

ML2 Configuration
Q_PLUGIN=ml2
Q_ML2_PLUGIN_MECHANISM_DRIVERS=openvswitch,sriovnicswitch
Q_ML2_PLUGIN_TYPE_DRIVERS=vlan,flat,local,vxlan,gre,geneve

Open vSwitch provider networking configuration
PHYSICAL_DEVICE_MAPPINGS=physnet1:<PF0_IFNAME>,physnet2:<PF1_IFNAME>

[[post-config|$NOVA_CONF]]
[DEFAULT]
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,
→˓ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter
Whitelist PCI devices
pci_passthrough_whitelist = {\\"devname\\": \\"<PF0_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet1\\" }
pci_passthrough_whitelist = {\\"devname\\": \\"<PF1_IFNAME>\\", \\"physical_network\\
→˓": \\"physnet2\\" }

[libvirt]
cpu_mode = host-model

ML2 plugin bits for SR-IOV enablement of Intel Corporation XL710/X710 Virtual
→˓Function
[[post-config|/$Q_PLUGIN_CONF_FILE]]
[ml2_sriov]
agent_required = True
supported_pci_vendor_devs = <VF_DEV_ID:VF_VEN_ID>

Start the devstack installation on the controller and compute hosts.

Run the sample vFW TC

Install Yardstick using Install Yardstick (NSB Testing) steps for OpenStack context.

Run the sample vFW RFC2544 SR-IOV test case (samples/vnf_samples/nsut/vfw/
tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml) in the heat context using steps described
in NS testing - using yardstick CLI section and the following Yardstick command line arguments:

yardstick -d task start --task-args='{"provider": "sriov"}' \
samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

84 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.12.10 Enabling other Traffic generators

IxLoad

1. Software needed: IxLoadAPI <IxLoadTclApi verson>Linux64.bin.tgz and <IxOS
version>Linux64.bin.tar.gz (Download from ixia support site) Install - <IxLoadTclApi
verson>Linux64.bin.tgz and <IxOS version>Linux64.bin.tar.gz If the installation was
not done inside the container, after installing the IXIA client, check /opt/ixia/ixload/<ver>/bin/
ixloadpython and make sure you can run this cmd inside the yardstick container. Usually user is required
to copy or link /opt/ixia/python/<ver>/bin/ixiapython to /usr/bin/ixiapython<ver>
inside the container.

2. Update pod_ixia.yaml file with ixia details.

cp <repo>/etc/yardstick/nodes/pod.yaml.nsb.sample.ixia \
etc/yardstick/nodes/pod_ixia.yaml

Config pod_ixia.yaml

nodes:
-

name: trafficgen_1
role: IxNet
ip: 1.2.1.1 #ixia machine ip
user: user
password: r00t
key_filename: /root/.ssh/id_rsa
tg_config:

ixchassis: "1.2.1.7" #ixia chassis ip
tcl_port: "8009" # tcl server port
lib_path: "/opt/ixia/ixos-api/8.01.0.2/lib/ixTcl1.0"
root_dir: "/opt/ixia/ixos-api/8.01.0.2/"
py_bin_path: "/opt/ixia/ixload/8.01.106.3/bin/"
dut_result_dir: "/mnt/ixia"
version: 8.1

interfaces:
xe0: # logical name from topology.yaml and vnfd.yaml

vpci: "2:5" # Card:port
driver: "none"
dpdk_port_num: 0
local_ip: "152.16.100.20"
netmask: "255.255.0.0"
local_mac: "00:98:10:64:14:00"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "2:6" # [(Card, port)]
driver: "none"
dpdk_port_num: 1
local_ip: "152.40.40.20"
netmask: "255.255.0.0"
local_mac: "00:98:28:28:14:00"

for sriov/ovs_dpdk pod files, please refer to Standalone Virtualization for ovs-dpdk/sriov configuration

3. Start IxOS TCL Server (Install ‘Ixia IxExplorer IxOS <version>’) You will also need to configure the IxLoad
machine to start the IXIA IxosTclServer. This can be started like so:

• Connect to the IxLoad machine using RDP

2.12. NSB Installation 85

Yardstick, Release Latest

• Go to: Start->Programs->Ixia->IxOS->IxOS 8.01-GA-Patch1->Ixia Tcl
Server IxOS 8.01-GA-Patch1 or C:\Program Files (x86)\Ixia\IxOS\8.
01-GA-Patch1\ixTclServer.exe

4. Create a folder Results in c:and share the folder on the network.

5. Execute testcase in samplevnf folder e.g. <repo>/samples/vnf_samples/nsut/vfw/
tc_baremetal_http_ixload_1b_Requests-65000_Concurrency.yaml

IxNetwork

IxNetwork testcases use IxNetwork API Python Bindings module, which is installed as part of the requirements of the
project.

1. Update pod_ixia.yaml file with ixia details.

cp <repo>/etc/yardstick/nodes/pod.yaml.nsb.sample.ixia \
etc/yardstick/nodes/pod_ixia.yaml

Configure pod_ixia.yaml

nodes:
-

name: trafficgen_1
role: IxNet
ip: 1.2.1.1 #ixia machine ip
user: user
password: r00t
key_filename: /root/.ssh/id_rsa
tg_config:

ixchassis: "1.2.1.7" #ixia chassis ip
tcl_port: "8009" # tcl server port
lib_path: "/opt/ixia/ixos-api/8.01.0.2/lib/ixTcl1.0"
root_dir: "/opt/ixia/ixos-api/8.01.0.2/"
py_bin_path: "/opt/ixia/ixload/8.01.106.3/bin/"
dut_result_dir: "/mnt/ixia"
version: 8.1

interfaces:
xe0: # logical name from topology.yaml and vnfd.yaml

vpci: "2:5" # Card:port
driver: "none"
dpdk_port_num: 0
local_ip: "152.16.100.20"
netmask: "255.255.0.0"
local_mac: "00:98:10:64:14:00"

xe1: # logical name from topology.yaml and vnfd.yaml
vpci: "2:6" # [(Card, port)]
driver: "none"
dpdk_port_num: 1
local_ip: "152.40.40.20"
netmask: "255.255.0.0"
local_mac: "00:98:28:28:14:00"

for sriov/ovs_dpdk pod files, please refer to above Standalone Virtualization for ovs-dpdk/sriov configu-
ration

2. Start IxNetwork TCL Server You will also need to configure the IxNetwork machine to start the IXIA IxNet-
workTclServer. This can be started like so:

86 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

• Connect to the IxNetwork machine using RDP

• Go to: Start->Programs->Ixia->IxNetwork->IxNetwork 7.21.893.14
GA->IxNetworkTclServer (or IxNetworkApiServer)

3. Execute testcase in samplevnf folder e.g. <repo>/samples/vnf_samples/nsut/vfw/
tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml

2.12.11 Spirent Landslide

In order to use Spirent Landslide for vEPC testcases, some dependencies have to be preinstalled and properly config-
ured.

• Java

32-bit Java installation is required for the Spirent Landslide TCL API.

$ sudo apt-get install openjdk-8-jdk:i386

Important: Make sure LD_LIBRARY_PATH is pointing to 32-bit JRE. For more details check
Linux Troubleshooting <http://TAS_HOST_IP/tclapiinstall.html#trouble> section of installation in-
structions.

• LsApi (Tcl API module)

Follow Landslide documentation for detailed instructions on Linux installation of Tcl API and its de-
pendencies http://TAS_HOST_IP/tclapiinstall.html. For working with LsApi Python
wrapper only steps 1-5 are required.

Note: After installation make sure your API home path is included in PYTHONPATH environment
variable.

Important: The current version of LsApi module has an issue with reading LD_LIBRARY_PATH.
For LsApi module to initialize correctly following lines (184-186) in lsapi.py

ldpath = os.environ.get('LD_LIBRARY_PATH', '')
if ldpath == '':
environ['LD_LIBRARY_PATH'] = environ['LD_LIBRARY_PATH'] + ':' + ldpath

should be changed to:

ldpath = os.environ.get('LD_LIBRARY_PATH', '')
if not ldpath == '':

environ['LD_LIBRARY_PATH'] = environ['LD_LIBRARY_PATH'] + ':' +
→˓ldpath

Note: The Spirent landslide TCL software package needs to be updated in case the user upgrades to a new version of
Spirent landslide software.

2.12. NSB Installation 87

Yardstick, Release Latest

2.13 Yardstick - NSB Testing - Operation

2.13.1 Abstract

NSB test configuration and OpenStack setup requirements

2.13.2 OpenStack Network Configuration

NSB requires certain OpenStack deployment configurations. For optimal VNF characterization using external traffic
generators NSB requires provider/external networks.

Provider networks

The VNFs require a clear L2 connect to the external network in order to generate realistic traffic from multiple address
ranges and ports.

In order to prevent Neutron from filtering traffic we have to disable Neutron Port Security. We also disable DHCP on
the data ports because we are binding the ports to DPDK and do not need DHCP addresses. We also disable gateways
because multiple default gateways can prevent SSH access to the VNF from the floating IP. We only want a gateway
on the mgmt network

uplink_0:
cidr: '10.1.0.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

Heat Topologies

By default Heat will attach every node to every Neutron network that is created. For scale-out tests we do not want to
attach every node to every network.

For each node you can specify which ports are on which network using the network_ports dictionary.

In this example we have TRex xe0 <-> xe0 VNF xe1 <-> xe0 UDP_Replay

vnf_0:
floating_ip: true
placement: "pgrp1"
network_ports:
mgmt:
- mgmt

uplink_0:
- xe0

downlink_0:
- xe1

tg_0:
floating_ip: true
placement: "pgrp1"
network_ports:
mgmt:
- mgmt

uplink_0:
(continues on next page)

88 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

- xe0
Trex always needs two ports
uplink_1:

- xe1
tg_1:
floating_ip: true
placement: "pgrp1"
network_ports:
mgmt:
- mgmt

downlink_0:
- xe0

Availability zone

The configuration of the availability zone is requred in cases where location of exact compute host/group of compute
hosts needs to be specified for SampleVNF or traffic generator in the heat test case. If this is the case, please follow
the instructions below.

1. Create a host aggregate in the OpenStack and add the available compute hosts into the aggregate group.

Note: Change the <AZ_NAME> (availability zone name), <AGG_NAME> (host aggregate name) and <HOST>
(host name of one of the compute) in the commands below.

create host aggregate
openstack aggregate create --zone <AZ_NAME> \
--property availability_zone=<AZ_NAME> <AGG_NAME>

show available hosts
openstack compute service list --service nova-compute
add selected host into the host aggregate
openstack aggregate add host <AGG_NAME> <HOST>

2. To specify the OpenStack location (the exact compute host or group of the hosts) of SampleVNF or traffic
generator in the heat test case, the availability_zone server configuration option should be used. For
example:

Note: The <AZ_NAME> (availability zone name) should be changed according to the name used during the
host aggregate creation steps above.

context:
name: yardstick
image: yardstick-samplevnfs
...
servers:
vnf_0:

...
availability_zone: <AZ_NAME>
...

tg__0:
...
availability_zone: <AZ_NAME>

(continues on next page)

2.13. Yardstick - NSB Testing - Operation 89

Yardstick, Release Latest

(continued from previous page)

...
networks:

...

There are two example of SampleVNF scale out test case which use the availability zone feature to specify
the exact location of scaled VNFs and traffic generators.

Those are:

<repo>/samples/vnf_samples/nsut/prox/tc_prox_heat_context_l2fwd_multiflow-2-scale-out.
→˓yaml
<repo>/samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale_
→˓out.yaml

Note: This section describes the PROX scale-out testcase, but the same procedure is used for the vFW test case.

1. Before running the scale-out test case, make sure the host aggregates are configured in the OpenStack environ-
ment. To check this, run the following command:

show configured host aggregates (example)
openstack aggregate list
+----+------+-------------------+
| ID | Name | Availability Zone |
+----+------+-------------------+
| 4 | agg0 | AZ_NAME_0 |
| 5 | agg1 | AZ_NAME_1 |
+----+------+-------------------+

2. If no host aggregates are configured, please follow the instructions to Create a host aggregate

3. Run the SampleVNF PROX scale-out test case, specifying the availability zone of each VNF and traffic
generator as task arguments.

Note: The az_0 and az_1 should be changed according to the host aggregates created in the OpenStack.

yardstick -d task start \
<repo>/samples/vnf_samples/nsut/prox/tc_prox_heat_context_l2fwd_multiflow-2-scale-
→˓out.yaml\
--task-args='{

"num_vnfs": 4, "availability_zone": {
"vnf_0": "az_0", "tg_0": "az_1",
"vnf_1": "az_0", "tg_1": "az_1",
"vnf_2": "az_0", "tg_2": "az_1",
"vnf_3": "az_0", "tg_3": "az_1"

}
}'

num_vnfs specifies how many VNFs are going to be deployed in the heat contexts. vnf_X and tg_X
arguments configure the availability zone where the VNF and traffic generator is going to be deployed.

2.13.3 Collectd KPIs

NSB can collect KPIs from collected. We have support for various plugins enabled by the Barometer project.

90 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

The default yardstick-samplevnf has collectd installed. This allows for collecting KPIs from the VNF.

Collecting KPIs from the NFVi is more complicated and requires manual setup. We assume that collectd is not installed
on the compute nodes.

To collectd KPIs from the NFVi compute nodes:

• install_collectd on the compute nodes

• create pod.yaml for the compute nodes

• enable specific plugins depending on the vswitch and DPDK

example pod.yaml section for Compute node running collectd.

-
name: "compute-1"
role: Compute
ip: "10.1.2.3"
user: "root"
ssh_port: "22"
password: ""
collectd:
interval: 5
plugins:
for libvirtd stats
virt: {}
intel_pmu: {}
ovs_stats:
path to OVS socket
ovs_socket_path: /var/run/openvswitch/db.sock

intel_rdt: {}

2.13.4 Scale-Up

VNFs performance data with scale-up

• Helps to figure out optimal number of cores specification in the Virtual Machine template creation or VNF

• Helps in comparison between different VNF vendor offerings

• Better the scale-up index, indicates the performance scalability of a particular solution

Heat

For VNF scale-up tests we increase the number for VNF worker threads. In the case of VNFs we also need to increase
the number of VCPUs and memory allocated to the VNF.

An example scale-up Heat testcase is:

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software

(continues on next page)

2.13. Yardstick - NSB Testing - Operation 91

Yardstick, Release Latest

(continued from previous page)

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
{% set framesize = framesize or "{64B: 100}" %}
{% set mem = mem or 20480 %}
{% set vcpus = vcpus or 10 %}
{% set vports = vports or 2 %}

schema: yardstick:task:0.1
scenarios:
- type: NSPerf

traffic_profile: ../../traffic_profiles/ipv4_throughput-scale-up.yaml
extra_args:
vports: {{ vports }}

topology: vfw-tg-topology-scale-up.yaml
nodes:
tg__0: trafficgen_0.yardstick
vnf__0: vnf_0.yardstick

options:
framesize:
uplink: {{ framesize }}
downlink: {{ framesize }}

flow:
src_ip: [

{% for vport in range(0,vports,2|int) %}
{'tg__0': 'xe{{vport}}'},

{% endfor %}]
dst_ip: [

{% for vport in range(1,vports,2|int) %}
{'tg__0': 'xe{{vport}}'},

{% endfor %}]
count: 1

traffic_type: 4
rfc2544:
allowed_drop_rate: 0.0001 - 0.0001

vnf__0:
rules: acl_1rule.yaml
vnf_config: {lb_config: 'SW', file: vfw_vnf_pipeline_cores_{{vcpus}}_ports_{

→˓{vports}}_lb_1_sw.conf }
runner:
type: Iteration
iterations: 10
interval: 35

context:
put node context first, so we don't HEAT deploy if node has errors
name: yardstick
image: yardstick-samplevnfs
flavor:
vcpus: {{ vcpus }}
ram: {{ mem }}
disk: 6
extra_specs:

hw:cpu_sockets: 1
hw:cpu_cores: {{ vcpus }}
hw:cpu_threads: 1

user: ubuntu
(continues on next page)

92 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

placement_groups:
pgrp1:

policy: "availability"
servers:
trafficgen_0:
floating_ip: true
placement: "pgrp1"

vnf_0:
floating_ip: true
placement: "pgrp1"

networks:
mgmt:
cidr: '10.0.1.0/24'

{% for vport in range(1,vports,2|int) %}
uplink_{{loop.index0}}:
cidr: '10.1.{{vport}}.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

downlink_{{loop.index0}}:
cidr: '10.1.{{vport+1}}.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

{% endfor %}

This testcase template requires specifying the number of VCPUs, Memory and Ports. We set the VCPUs and memory
using the --task-args options

yardstick task start --task-args='{"mem": 10480, "vcpus": 4, "vports": 2}' \
samples/vnf_samples/nsut/vfw/tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale-up.yaml

In order to support ports scale-up, traffic and topology templates need to be used in testcase.

A example topology template is:

Copyright (c) 2016-2018 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

{% set vports = get(extra_args, 'vports', '2') %}
nsd:nsd-catalog:

nsd:
- id: 3tg-topology

name: 3tg-topology
short-name: 3tg-topology
description: 3tg-topology

(continues on next page)

2.13. Yardstick - NSB Testing - Operation 93

Yardstick, Release Latest

(continued from previous page)

constituent-vnfd:
- member-vnf-index: '1'

vnfd-id-ref: tg__0
VNF model: ../../vnf_descriptors/tg_rfc2544_tpl.yaml #VNF type

- member-vnf-index: '2'
vnfd-id-ref: vnf__0
VNF model: ../../vnf_descriptors/vfw_vnf.yaml #VNF type

vld:
{% for vport in range(0,vports,2|int) %}

- id: uplink_{{loop.index0}}
name: tg__0 to vnf__0 link {{vport + 1}}
type: ELAN
vnfd-connection-point-ref:
- member-vnf-index-ref: '1'

vnfd-connection-point-ref: xe{{vport}}
vnfd-id-ref: tg__0

- member-vnf-index-ref: '2'
vnfd-connection-point-ref: xe{{vport}}
vnfd-id-ref: vnf__0

- id: downlink_{{loop.index0}}
name: vnf__0 to tg__0 link {{vport + 2}}
type: ELAN
vnfd-connection-point-ref:
- member-vnf-index-ref: '2'

vnfd-connection-point-ref: xe{{vport+1}}
vnfd-id-ref: vnf__0

- member-vnf-index-ref: '1'
vnfd-connection-point-ref: xe{{vport+1}}
vnfd-id-ref: tg__0

{% endfor %}

This template has vports as an argument. To pass this argument it needs to be configured in extra_args scenario
definition. Please note that more argument can be defined in that section. All of them will be passed to topology and
traffic profile templates

For example:

schema: yardstick:task:0.1
scenarios:
- type: NSPerf

traffic_profile: ../../traffic_profiles/ipv4_throughput-scale-up.yaml
extra_args:
vports: {{ vports }}

topology: vfw-tg-topology-scale-up.yaml

A example traffic profile template is:

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software

(continues on next page)

94 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

flow definition for ACL tests - 1K flows - ipv4 only
#
the number of flows defines the widest range of parameters
for example if srcip_range=1.0.0.1-1.0.0.255 and dst_ip_range=10.0.0.1-10.0.1.255
and it should define only 16 flows
#
there is assumption that packets generated will have a random sequences of
→˓following addresses pairs
in the packets
1. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
2. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
...
512. src=1.x.x.x(x.x.x =random from 1..255) dst=10.x.x.x (random from 1..512)
#
not all combination should be filled
Any other field with random range will be added to flow definition
#
the example.yaml provides all possibilities for traffic generation
#
the profile defines a public and private side to make limited traffic correlation
between private and public side same way as it is made by IXIA solution.
#
{% set vports = get(extra_args, 'vports', 2) %}

schema: "nsb:traffic_profile:0.1"

This file is a template, it will be filled with values from tc.yaml before passing
→˓to the traffic generator

name: rfc2544
description: Traffic profile to run RFC2544 latency
traffic_profile:

traffic_type: RFC2544Profile # defines traffic behavior - constant or look for
→˓highest possible throughput
frame_rate: 100 # pc of linerate
duration: {{ duration }}

{% for vport in range((vports / 2)|int) %}
uplink_{{vport}}:
ipv4:
id: {{ (vport * 2) + 1 }}
outer_l2:
framesize:

64B: "{{ get(imix, 'imix.uplink.64B', '0') }}"
128B: "{{ get(imix, 'imix.uplink.128B', '0') }}"
256B: "{{ get(imix, 'imix.uplink.256B', '0') }}"
373b: "{{ get(imix, 'imix.uplink.373B', '0') }}"
512B: "{{ get(imix, 'imix.uplink.512B', '0') }}"
570B: "{{ get(imix, 'imix.uplink.570B', '0') }}"
1024B: "{{get(imix, 'imix.uplink.1024B', '0') }}"
1400B: "{{ get(imix, 'imix.uplink.1400B', '0') }}"
1500B: "{{ get(imix, 'imix.uplink.1500B', '0') }}"

(continues on next page)

2.13. Yardstick - NSB Testing - Operation 95

Yardstick, Release Latest

(continued from previous page)

1518B: "{{ get(imix, 'imix.uplink.1518B', '0') }}"
outer_l3v4:

proto: "udp"
srcip4: {{ get(flow, 'flow.src_ip_%s'| format(vport), '1.%s.1.1-1.%s.255.255'|

→˓format(vport, vport)) }}
dstip4: {{ get(flow, 'flow.dst_ip_%s'| format(vport), '90.%s.1.1-90.%s.255.255

→˓'| format(vport, vport)) }}
count: {{ get(flow, 'flow.count', '1') }}
ttl: 32
dscp: 0

outer_l4:
srcport: {{ get(flow, 'flow.src_port_%s'| format(vport), '1234-4321') }}
dstport: {{ get(flow, 'flow.dst_port_%s'| format(vport), '2001-4001') }}
count: {{ get(flow, 'flow.count', '1') }}

downlink_{{vport}}:
ipv4:
id: {{ (vport * 2) + 2}}
outer_l2:

framesize:
64B: "{{ get(imix, 'imix.downlink.64B', '0') }}"
128B: "{{ get(imix, 'imix.downlink.128B', '0') }}"
256B: "{{ get(imix, 'imix.downlink.256B', '0') }}"
373b: "{{ get(imix, 'imix.downlink.373B', '0') }}"
512B: "{{ get(imix, 'imix.downlink.512B', '0') }}"
570B: "{{ get(imix, 'imix.downlink.570B', '0') }}"
1024B: "{{get(imix, 'imix.downlink.1024B', '0') }}"
1400B: "{{ get(imix, 'imix.downlink.1400B', '0') }}"
1500B: "{{ get(imix, 'imix.downlink.1500B', '0') }}"
1518B: "{{ get(imix, 'imix.downlink.1518B', '0') }}"

outer_l3v4:
proto: "udp"
srcip4: {{ get(flow, 'flow.dst_ip_%s'| format(vport), '90.%s.1.1-90.%s.255.255

→˓'| format(vport, vport)) }}
dstip4: {{ get(flow, 'flow.src_ip_%s'| format(vport), '1.%s.1.1-1.%s.255.255'|

→˓format(vport, vport)) }}
count: {{ get(flow, 'flow.count', '1') }}
ttl: 32
dscp: 0

outer_l4:
srcport: {{ get(flow, 'flow.dst_port_%s'| format(vport), '1234-4321') }}
dstport: {{ get(flow, 'flow.src_port_%s'| format(vport), '2001-4001') }}
count: {{ get(flow, 'flow.count', '1') }}

{% endfor %}

There is an option to provide predefined config for SampleVNFs. Path to config file may by specified in vnf_config
scenario section.

vnf__0:
rules: acl_1rule.yaml
vnf_config: {lb_config: 'SW', file: vfw_vnf_pipeline_cores_4_ports_2_lb_1_sw.conf }

Baremetal

1. Follow above traffic generator section to setup.

96 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2. Edit num of threads in <repo>/samples/vnf_samples/nsut/vfw/
tc_baremetal_rfc2544_ipv4_trex_scale_up.yaml e.g, 6 Threads for given VNF

schema: yardstick:task:0.1
scenarios:
{% for worker_thread in [1, 2 ,3 , 4, 5, 6] %}
- type: NSPerf

traffic_profile: ../../traffic_profiles/ipv4_throughput.yaml
topology: vfw-tg-topology.yaml
nodes:
tg__0: trafficgen_0.yardstick
vnf__0: vnf_0.yardstick

options:
framesize:

uplink: {64B: 100}
downlink: {64B: 100}

flow:
src_ip: [{'tg__0': 'xe0'}]
dst_ip: [{'tg__0': 'xe1'}]
count: 1

traffic_type: 4
rfc2544:
allowed_drop_rate: 0.0001 - 0.0001

vnf__0:
rules: acl_1rule.yaml
vnf_config: {lb_config: 'HW', lb_count: 1, worker_config: '1C/1T', worker_

→˓threads: {{worker_thread}}}
nfvi_enable: True

runner:
type: Iteration
iterations: 10
interval: 35

{% endfor %}
context:
type: Node
name: yardstick
nfvi_type: baremetal
file: /etc/yardstick/nodes/pod.yaml

2.13.5 Scale-Out

VNFs performance data with scale-out helps

• capacity planning to meet the given network node requirements

• comparison between different VNF vendor offerings

• better the scale-out index, provides the flexibility in meeting future capacity requirements

Standalone

Scale-out not supported on Baremetal.

1. Follow above traffic generator section to setup.

2. Generate testcase for standalone virtualization using ansible scripts

2.13. Yardstick - NSB Testing - Operation 97

Yardstick, Release Latest

cd <repo>/ansible
trex: standalone_ovs_scale_out_test.yaml or standalone_sriov_scale_out_test.
→˓yaml
ixia: standalone_ovs_scale_out_ixia_test.yaml or standalone_sriov_scale_out_
→˓ixia_test.yaml
ixia_correlated: standalone_ovs_scale_out_ixia_correlated_test.yaml or
→˓standalone_sriov_scale_out_ixia_correlated_test.yaml

update the ovs_dpdk or sriov above Ansible scripts reflect the setup

3. run the test

<repo>/samples/vnf_samples/nsut/tc_sriov_vfw_udp_ixia_correlated_scale_out-1.
→˓yaml
<repo>/samples/vnf_samples/nsut/tc_sriov_vfw_udp_ixia_correlated_scale_out-2.
→˓yaml

Heat

There are sample scale-out all-VM Heat tests. These tests only use VMs and don’t use external traffic.

The tests use UDP_Replay and correlated traffic.

<repo>/samples/vnf_samples/nsut/cgnapt/tc_heat_rfc2544_ipv4_1flow_64B_trex_correlated_
→˓scale_4.yaml

To run the test you need to increase OpenStack CPU, Memory and Port quotas.

2.13.6 Traffic Generator tuning

The TRex traffic generator can be setup to use multiple threads per core, this is for multiqueue testing.

TRex does not automatically enable multiple threads because we currently cannot detect the number of queues on a
device.

To enable multiple queue set the queues_per_port value in the TG VNF options section.

scenarios:
- type: NSPerf
nodes:

tg__0: trafficgen_0.yardstick

options:
tg_0:
queues_per_port: 2

2.13.7 Standalone configuration

NSB supports certain Standalone deployment configurations. Standalone supports provisioning a VM in a standalone
visualised environment using kvm/qemu. There two types of Standalone contexts available: OVS-DPDK and SRIOV.
OVS-DPDK uses OVS network with DPDK drivers. SRIOV enables network traffic to bypass the software switch
layer of the Hyper-V stack.

98 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Emulated machine type

For better performance test results of emulated VM spawned by Yardstick SA context (OvS-DPDK/SRIOV), it may
be important to control the emulated machine type used by QEMU emulator. This attribute can be configured via TC
definition in contexts section under extra_specs configuration.

For example:

contexts:
...
- type: StandaloneSriov

...
flavor:

...
extra_specs:
...
machine_type: pc-i440fx-bionic

Where, machine_type can be set to one of the emulated machine type supported by QEMU running on SUT
platform. To get full list of supported emulated machine types, the following command can be used on the target SUT
host.

qemu-system-x86_64 -machine ?

By default, the machine_type option is set to pc-i440fx-xenial which is suitable for running Ubuntu 16.04
VM image. So, if this type is not supported by the target platform or another VM image is used for stand alone (SA)
context VM (e.g.: bionic image for Ubuntu 18.04), this configuration should be changed accordingly.

Standalone with OVS-DPDK

SampleVNF image is spawned in a VM on a baremetal server. OVS with DPDK is installed on the baremetal server.

Note: Ubuntu 17.10 requires DPDK v.17.05 and higher, DPDK v.17.05 requires OVS v.2.8.0.

Default values for OVS-DPDK:

• queues: 4

• lcore_mask: “”

• pmd_cpu_mask: “0x6”

Sample test case file

1. Prepare SampleVNF image and copy it to flavor/images.

2. Prepare context files for TREX and SampleVNF under contexts/file.

3. Add bridge named br-int to the baremetal where SampleVNF image is deployed.

4. Modify networks/phy_port accordingly to the baremetal setup.

5. Run test from:

2.13. Yardstick - NSB Testing - Operation 99

Yardstick, Release Latest

Copyright (c) 2016-2019 Intel Corporation
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
{% set framesize = framesize or "{64B: 100}" %}

schema: yardstick:task:0.1
scenarios:
- type: NSPerf

traffic_profile: ../../traffic_profiles/ipv4_throughput.yaml
topology: acl-tg-topology.yaml
nodes:
tg__0: trafficgen_0.yardstick
vnf__0: vnf_0.yardstick

options:
framesize:
uplink: {{ framesize }}
downlink: {{ framesize }}

flow:
src_ip: [{'tg__0': 'xe0'}]
dst_ip: [{'tg__0': 'xe1'}]
count: 1

traffic_type: 4
rfc2544:
allowed_drop_rate: 0.0001 - 0.0001

vnf__0:
rules: acl_1rule.yaml
vnf_config: {lb_config: 'SW', lb_count: 1, worker_config: '1C/1T', worker_

→˓threads: 1}
runner:
type: Iteration
iterations: 10
interval: 35

contexts:
- name: yardstick
type: Node
file: /etc/yardstick/nodes/standalone/trex_bm.yaml

- type: StandaloneOvsDpdk
name: yardstick
file: /etc/yardstick/nodes/standalone/host_ovs.yaml
vm_deploy: True
ovs_properties:

version:
ovs: 2.7.0
dpdk: 16.11.1

pmd_threads: 2
ram:
socket_0: 2048

(continues on next page)

100 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

socket_1: 2048
queues: 4
lcore_mask: ""
pmd_cpu_mask: "0x6"
vpath: "/usr/local"

flavor:
images: "/var/lib/libvirt/images/yardstick-nsb-image.img"
ram: 16384
extra_specs:
hw:cpu_sockets: 1
hw:cpu_cores: 6
hw:cpu_threads: 2

user: ""
password: ""

servers:
vnf_0:
network_ports:
mgmt:
cidr: '1.1.1.7/24'

xe0:
- uplink_0

xe1:
- downlink_0

networks:
uplink_0:
port_num: 0
phy_port: "0000:05:00.0"
vpci: "0000:00:07.0"
cidr: '152.16.100.10/24'
gateway_ip: '152.16.100.20'

downlink_0:
port_num: 1
phy_port: "0000:05:00.1"
vpci: "0000:00:08.0"
cidr: '152.16.40.10/24'
gateway_ip: '152.16.100.20'

2.13.8 Preparing test run of vEPC test case

Provided vEPC test cases are examples of emulation of vEPC infrastructure components, such as UE, eNodeB, MME,
SGW, PGW.

Location of vEPC test cases: samples/vnf_samples/nsut/vepc/.

Before running a specific vEPC test case using NSB, some preconfiguration needs to be done.

2.14 Update Spirent Landslide TG configuration in pod file

Examples of pod.yaml files could be found in etc/yardstick/nodes/standalone. The name of related
pod file could be checked in the context section of NSB test case.

The pod.yaml related to vEPC test case uses some sub-structures that hold the details of accessing the Spirent
Landslide traffic generator. These subsections and the changes to be done in provided example pod file are described

2.14. Update Spirent Landslide TG configuration in pod file 101

Yardstick, Release Latest

below.

1. tas_manager: data under this key holds the information required to access Landslide TAS (Test Administration
Server) and perform needed configurations on it.

• ip: IP address of TAS Manager node; should be updated according to test setup used

• super_user: superuser name; could be retrieved from Landslide documentation

• super_user_password: superuser password; could be retrieved from Landslide documentation

• cfguser_password: password of predefined user named ‘cfguser’; default password could be retrieved
from Landslide documentation

• test_user: username to be used during test run as a Landslide library name; to be defined by test run operator

• test_user_password: password of test user; to be defined by test run operator

• proto: http or https; to be defined by test run operator

• license: Landslide license number installed on TAS

2. The config section holds information about test servers (TSs) and systems under test (SUTs). Data is represented
as a list of entries. Each such entry contains:

• test_server: this subsection represents data related to test server configuration, such as:

– name: test server name; unique custom name to be defined by test operator

– role: this value is used as a key to bind specific Test Server and TestCase; should be set to one of test
types supported by TAS license

– ip: Test Server IP address

– thread_model: parameter related to Test Server performance mode. The value should be one of the
following: “Legacy” | “Max” | “Fireball”. Refer to Landslide documentation for details.

– phySubnets: a structure used to specify IP ranges reservations on specific network interfaces of related
Test Server. Structure fields are:

– base: start of IP address range

– mask: IP range mask in CIDR format

– name: network interface name, e.g. eth1

– numIps: size of IP address range

• preResolvedArpAddress: a structure used to specify the range of IP addresses for which the ARP re-
sponses will be emulated

– StartingAddress: IP address specifying the start of IP address range

– NumNodes: size of the IP address range

• suts: a structure that contains definitions of each specific SUT (represents a vEPC component). SUT structure
contains following key/value pairs:

– name: unique custom string specifying SUT name

– role: string value corresponding with an SUT role specified in the session profile (test session template)
file

– managementIp: SUT management IP adress

– phy: network interface name, e.g. eth1

– ip: vEPC component IP address used in test case topology

102 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

– nextHop: next hop IP address, to allow for vEPC inter-node communication

2.15 Update NSB test case definitions

NSB test case file designated for vEPC testing contains an example of specific test scenario configuration. Test operator
may change these definitions as required for the use case that requires testing. Specifically, following subsections of
the vEPC test case (section scenarios) may be changed.

1. Subsection options: contains custom parameters used for vEPC testing

• subsection dmf: may contain one or more parameters specified in traffic_profile template file

• subsection test_cases: contains re-definitions of parameters specified in session_profile template
file

Note: All parameters in session_profile, value of which is a placeholder, needs to be re-
defined to construct a valid test session.

2. Subsection runner: specifies the test duration and the interval of TG and VNF side KPIs polling. For more details,
refer to Architecture.

2.15.1 Preparing test run of vPE test case

The vPE (Provider Edge Router) is a :term: VNF approximation serving as an Edge Router. The vPE is approximated
using the ip_pipeline dpdk application.

The vpe_config file must be passed as it is not auto generated. The vpe_script defines the rules applied
to each of the pipelines. This can be auto generated or a file can be passed using the script_file option in
vnf_config as shown below. The full_tm_profile_file option must be used if a traffic manager is defined
in vpe_config.

vnf_config: { file: './vpe_config/vpe_config_2_ports',
action_bulk_file: './vpe_config/action_bulk_512.txt',
full_tm_profile_file: './vpe_config/full_tm_profile_10G.cfg',
script_file: './vpe_config/vpe_script_sample' }

Testcases for vPE can be found in the vnf_samples/nsut/vpe directory. A testcase can be started with the
following command as an example:

yardstick task start /yardstick/samples/vnf_samples/nsut/vpe/tc_baremetal_rfc2544_
→˓ipv4_1flow_64B_ixia.yaml

2.15. Update NSB test case definitions 103

Yardstick, Release Latest

2.15.2 Preparing test run of vIPSEC test case

Location of vIPSEC test cases: samples/vnf_samples/nsut/ipsec/.

Before running a specific vIPSEC test case using NSB, some dependencies have to be preinstalled and properly
configured. - VPP

export UBUNTU="xenial"
export RELEASE=".stable.1810"
sudo rm /etc/apt/sources.list.d/99fd.io.list
echo "deb [trusted=yes] https://nexus.fd.io/content/repositories/fd.io$RELEASE.ubuntu.
→˓$UBUNTU.main/ ./" | sudo tee -a /etc/apt/sources.list.d/99fd.io.list
sudo apt-get update
sudo apt-get install vpp vpp-lib vpp-plugin vpp-dbg vpp-dev vpp-api-java vpp-api-
→˓python vpp-api-lua

• VAT templates

VAT templates is required for the VPP API.

mkdir -p /opt/nsb_bin/vpp/templates/
echo 'exec trace add dpdk-input 50' > /opt/nsb_bin/vpp/templates/enable_dpdk_traces.
→˓vat
echo 'exec trace add vhost-user-input 50' > /opt/nsb_bin/vpp/templates/enable_vhost_
→˓user_traces.vat
echo 'exec trace add memif-input 50' > /opt/nsb_bin/vpp/templates/enable_memif_traces.
→˓vat
cat > /opt/nsb_bin/vpp/templates/dump_interfaces.vat << EOL
sw_interface_dump
dump_interface_table
quit
EOL

2.15.3 Preparing test run of vCMTS test case

Location of vCMTS test cases: samples/vnf_samples/nsut/cmts/.

Before running a specific vIPSEC test case using NSB, some changes must be made to the original vCMTS package.

Allow SSH access to the docker images

Follow the documentation at https://docs.docker.com/engine/examples/
running_ssh_service/ to allow SSH access to the Pktgen/vcmts-d containers located at:

• $VCMTS_ROOT/pktgen/docker/docker-image-pktgen/Dockerfile and

• $VCMTS_ROOT/vcmtsd/docker/docker-image-vcmtsd/Dockerfile

Deploy the ConfigMaps for Pktgen and vCMTSd

cd $VCMTS_ROOT/kubernetes/helm/pktgen
helm template . -x templates/pktgen-configmap.yaml > configmap.yaml
kubectl create -f configmap.yaml

cd $VCMTS_ROOT/kubernetes/helm/vcmtsd

(continues on next page)

104 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

helm template . -x templates/vcmts-configmap.yaml > configmap.yaml
kubectl create -f configmap.yaml

2.16 Yardstick Test Cases

2.16.1 Abstract

This chapter lists available Yardstick test cases. Yardstick test cases are divided in two main categories:

• Generic NFVI Test Cases - Test Cases developed to realize the methodology described in Methodology

• OPNFV Feature Test Cases - Test Cases developed to verify one or more aspect of a feature delivered by an
OPNFV Project.

2.16.2 Generic NFVI Test Case Descriptions

2.16. Yardstick Test Cases 105

Yardstick, Release Latest

Yardstick Test Case Description TC001

Network Performance
test case id OPNFV_YARDSTICK_TC001_NETWORK PER-

FORMANCE
metric Number of flows and throughput
test purpose The purpose of TC001 is to evaluate the IaaS network

performance with regards to flows and throughput, such
as if and how different amounts of flows matter for the
throughput between hosts on different compute blades.
Typically e.g. the performance of a vSwitch depends
on the number of flows running through it. Also perfor-
mance of other equipment or entities can depend on the
number of flows or the packet sizes used.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool pktgen
Linux packet generator is a tool to generate packets at
very high speed in the kernel. pktgen is mainly used to
drive and LAN equipment test network. pktgen supports
multi threading. To generate random MAC address, IP
address, port number UDP packets, pktgen uses multi-
ple CPU processors in the different PCI bus (PCI, PCIe
bus) with Gigabit Ethernet tested (pktgen performance
depends on the CPU processing speed, memory delay,
PCI bus speed hardware parameters), Transmit data rate
can be even larger than 10GBit/s. Visible can satisfy
most card test requirements.
(Pktgen is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

test description This test case uses Pktgen to generate packet flow be-
tween two hosts for simulating network workloads on
the SUT.

traffic profile An IP table is setup on server to monitor for received
packets.

configuration file: opnfv_yardstick_tc001.yaml
Packet size is set to 60 bytes. Number of ports: 10,
50, 100, 500 and 1000, where each runs for 20 seconds.
The whole sequence is run twice The client and server
are distributed on different hardware.
For SLA max_ppm is set to 1000. The amount of con-
figured ports map to between 110 up to 1001000 flows,
respectively.

applicability Test can be configured with different:
• packet sizes;
• amount of flows;
• test duration.

Default values exist.
SLA (optional): max_ppm: The number of packets per
million packets sent that are acceptable to loose, not re-
ceived.

usability This test case is used for generating high network
throughput to simulate certain workloads on the SUT.
Hence it should work with other test cases.

references pktgen
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with pktgen included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 Two host VMs are booted, as server and client.
step 2 Yardstick is connected with the server VM by using ssh.

‘pktgen_benchmark’ bash script is copyied from Jump
Host to the server VM via the ssh tunnel.

step 3 An IP table is setup on server to monitor for received
packets.

step 4 pktgen is invoked to generate packet flow between two
server and client for simulating network workloads on
the SUT. Results are processed and checked against the
SLA. Logs are produced and stored.
Result: Logs are stored.

step 5 Two host VMs are deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

106 Chapter 2. Yardstick User Guide

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

2.16. Yardstick Test Cases 107

Yardstick, Release Latest

Yardstick Test Case Description TC002

Network Latency
test case id OPNFV_YARDSTICK_TC002_NETWORK LA-

TENCY
metric RTT (Round Trip Time)
test purpose The purpose of TC002 is to do a basic verification that

network latency is within acceptable boundaries when
packets travel between hosts located on same or differ-
ent compute blades.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool ping
Ping is a computer network administration software util-
ity used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time
for packet sent from the originating host to a destination
computer that are echoed back to the source.
Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the Yard-
stick Docker image. (For example also a Cirros image
can be downloaded from cirros-image, it includes ping)

test topology Ping packets (ICMP protocol’s mandatory
ECHO_REQUEST datagram) are sent from host VM
to target VM(s) to elicit ICMP ECHO_RESPONSE.
For one host VM there can be multiple target VMs. Host
VM and target VM(s) can be on same or different com-
pute blades.

configuration file: opnfv_yardstick_tc002.yaml
Packet size 100 bytes. Test duration 60 seconds. One
ping each 10 seconds. Test is iterated two times. SLA
RTT is set to maximum 10 ms.

applicability This test case can be configured with different:
• packet sizes;
• burst sizes;
• ping intervals;
• test durations;
• test iterations.

Default values exist.
SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also
normal to achieve in balanced L2 environments. How-
ever, to cover most configurations, both bare metal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing. Many real
time applications start to suffer badly if the RTT time is
higher than this. Some may suffer bad also close to this
RTT, while others may not suffer at all. It is a compro-
mise that may have to be tuned for different configura-
tion purposes.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references Ping
ETSI-NFV-TST001

pre-test conditions The test case image (cirros-image) needs to be installed
into Glance with ping included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 Two host VMs are booted, as server and client.
step 2 Yardstick is connected with the server VM by using ssh.

‘ping_benchmark’ bash script is copied from Jump Host
to the server VM via the ssh tunnel.

step 3 Ping is invoked. Ping packets are sent from server VM
to client VM. RTT results are calculated and checked
against the SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 Two host VMs are deleted.
test verdict Test should not PASS if any RTT is above the optional

SLA value, or if there is a test case execution problem.

108 Chapter 2. Yardstick User Guide

https://download.cirros-cloud.net
https://linux.die.net/man/8/ping

Yardstick, Release Latest

2.16. Yardstick Test Cases 109

Yardstick, Release Latest

Yardstick Test Case Description TC004

Cache Utilization
test case id OPNFV_YARDSTICK_TC004_CACHE Utilization
metric cache hit, cache miss, hit/miss ratio, buffer size and page

cache size
test purpose The purpose of TC004 is to evaluate the IaaS compute

capability with regards to cache utilization.This test case
should be run in parallel with other Yardstick test cases
and not run as a stand-alone test case.
This test case measures cache usage statistics, includ-
ing cache hit, cache miss, hit ratio, buffer cache size
and page cache size, with some wokloads runing on the
infrastructure. Both average and maximun values are
collected.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool cachestat
cachestat is a tool using Linux ftrace capabilities for
showing Linux page cache hit/miss statistics.
(cachestat is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with cachestat included.)

test description cachestat test is invoked in a host VM on a compute
blade, cachestat test requires some other test cases run-
ning in the host to stimulate workload.

configuration File: cachestat.yaml (in the ‘samples’ directory)
Interval is set 1. Test repeat, pausing every 1 seconds
in-between. Test durarion is set to 60 seconds.
SLA is not available in this test case.

applicability Test can be configured with different:
• interval;
• runner Duration.

Default values exist.
usability This test case is one of Yardstick’s generic test. Thus it

is runnable on most of the scenarios.
references cachestat

ETSI-NFV-TST001
pre-test conditions The test case image needs to be installed into Glance

with cachestat included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with cachestat installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.

‘cache_stat’ bash script is copyied from Jump Host to
the server VM via the ssh tunnel.

step 3 ‘cache_stat’ script is invoked. Raw cache usage statis-
tics are collected and filtrated. Average and maximum
values are calculated and recorded. Logs are produced
and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict None. Cache utilization results are collected and stored.110 Chapter 2. Yardstick User Guide

https://github.com/brendangregg/perf-tools/tree/master/fs

Yardstick, Release Latest

2.16. Yardstick Test Cases 111

Yardstick, Release Latest

Yardstick Test Case Description TC005

Storage Performance
test case id OPNFV_YARDSTICK_TC005_STORAGE PERFOR-

MANCE
metric IOPS (Average IOs performed per second), Throughput

(Average disk read/write bandwidth rate), Latency (Av-
erage disk read/write latency)

test purpose The purpose of TC005 is to evaluate the IaaS storage
performance with regards to IOPS, throughput and la-
tency.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool fio
fio is an I/O tool meant to be used both for bench-
mark and stress/hardware verification. It has support for
19 different types of I/O engines (sync, mmap, libaio,
posixaio, SG v3, splice, null, network, syslet, guasi, so-
larisaio, and more), I/O priorities (for newer Linux ker-
nels), rate I/O, forked or threaded jobs, and much more.
(fio is not always part of a Linux distribution, hence
it needs to be installed. As an example see the /yard-
stick/tools/ directory for how to generate a Linux image
with fio included.)

test description fio test is invoked in a host VM on a compute blade, a
job file as well as parameters are passed to fio and fio
will start doing what the job file tells it to do.

configuration file: opnfv_yardstick_tc005.yaml
IO types is set to read, write, randwrite, randread, rw. IO
block size is set to 4KB, 64KB, 1024KB. fio is run for
each IO type and IO block size scheme, each iteration
runs for 30 seconds (10 for ramp time, 20 for runtime).
For SLA, minimum read/write iops is set to 100, mini-
mum read/write throughput is set to 400 KB/s, and max-
imum read/write latency is set to 20000 usec.

applicability This test case can be configured with different:
• IO types;
• IO block size;
• IO depth;
• ramp time;
• test duration.

Default values exist.
SLA is optional. The SLA in this test case serves as
an example. Considerably higher throughput and lower
latency are expected. However, to cover most configu-
rations, both baremetal and fully virtualized ones, this
value should be possible to achieve and acceptable for
black box testing. Many heavy IO applications start to
suffer badly if the read/write bandwidths are lower than
this.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references fio
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with fio included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with fio installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.

‘fio_benchmark’ bash script is copyied from Jump Host
to the host VM via the ssh tunnel.

step 3 ‘fio_benchmark’ script is invoked. Simulated IO opera-
tions are started. IOPS, disk read/write bandwidth and
latency are recorded and checked against the SLA. Logs
are produced and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

112 Chapter 2. Yardstick User Guide

http://bluestop.org/files/fio/HOWTO.txt

Yardstick, Release Latest

2.16. Yardstick Test Cases 113

Yardstick, Release Latest

Yardstick Test Case Description TC006

Volume storage Performance
test case id OPNFV_YARDSTICK_TC006_VOLUME STORAGE

PERFORMANCE
metric IOPS (Average IOs performed per second), Throughput

(Average disk read/write bandwidth rate), Latency (Av-
erage disk read/write latency)

test purpose The purpose of TC006 is to evaluate the IaaS volume
storage performance with regards to IOPS, throughput
and latency.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool fio
fio is an I/O tool meant to be used both for bench-
mark and stress/hardware verification. It has support for
19 different types of I/O engines (sync, mmap, libaio,
posixaio, SG v3, splice, null, network, syslet, guasi, so-
larisaio, and more), I/O priorities (for newer Linux ker-
nels), rate I/O, forked or threaded jobs, and much more.
(fio is not always part of a Linux distribution, hence
it needs to be installed. As an example see the /yard-
stick/tools/ directory for how to generate a Linux image
with fio included.)

test description fio test is invoked in a host VM with a volume attached
on a compute blade, a job file as well as parameters are
passed to fio and fio will start doing what the job file
tells it to do.

configuration file: opnfv_yardstick_tc006.yaml
Fio job file is provided to define the benchmark process
Target volume is mounted at /FIO_Test directory
For SLA, minimum read/write iops is set to 100, mini-
mum read/write throughput is set to 400 KB/s, and max-
imum read/write latency is set to 20000 usec.

applicability This test case can be configured with different:
• Job file;
• Volume mount directory.

SLA is optional. The SLA in this test case serves as
an example. Considerably higher throughput and lower
latency are expected. However, to cover most configu-
rations, both baremetal and fully virtualized ones, this
value should be possible to achieve and acceptable for
black box testing. Many heavy IO applications start to
suffer badly if the read/write bandwidths are lower than
this.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references fio
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with fio included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with fio installed is booted. A 200G volume

is attached to the host VM
step 2 Yardstick is connected with the host VM by using ssh.

‘job_file.ini’ is copyied from Jump Host to the host VM
via the ssh tunnel. The attached volume is formated and
mounted.

step 3 Fio benchmark is invoked. Simulated IO operations are
started. IOPS, disk read/write bandwidth and latency
are recorded and checked against the SLA. Logs are pro-
duced and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

114 Chapter 2. Yardstick User Guide

http://bluestop.org/files/fio/HOWTO.txt

Yardstick, Release Latest

Yardstick Test Case Description TC008

Packet Loss Extended Test
test
case
id

OPNFV_YARDSTICK_TC008_NW PERF, Packet loss Extended Test

met-
ric

Number of flows, packet size and throughput

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of packet sizes and flows matter for the throughput between VMs on different compute blades.
Typically e.g. the performance of a vSwitch depends on the number of flows running through it. Also
performance of other equipment or entities can depend on the number of flows or the packet sizes used.
The purpose is also to be able to spot trends. Test results, graphs ans similar shall be stored for comparison
reasons and product evolution understanding between different OPNFV versions and/or configurations.

con-
fig-
u-
ra-
tion

file: opnfv_yardstick_tc008.yaml
Packet size: 64, 128, 256, 512, 1024, 1280 and 1518 bytes.
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to 1001000
flows, respectively. Each packet_size/port_amount combination is run ten times, for 20 seconds each. Then
the next packet_size/port_amount combination is run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test
tool

pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Docker image. As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)

ref-
er-
ences

pktgen
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to loose, not
received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 115

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC009

Packet Loss
test
case
id

OPNFV_YARDSTICK_TC009_NW PERF, Packet loss

met-
ric

Number of flows, packets lost and throughput

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of flows matter for the throughput between VMs on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of flows running through it. Also performance of other
equipment or entities can depend on the number of flows or the packet sizes used. The purpose is also to
be able to spot trends. Test results, graphs ans similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

con-
fig-
u-
ra-
tion

file: opnfv_yardstick_tc009.yaml
Packet size: 64 bytes
Number of ports: 1, 10, 50, 100, 500 and 1000. The amount of configured ports map from 2 up to 1001000
flows, respectively. Each port amount is run ten times, for 20 seconds each. Then the next port_amount is
run, and so on.
The client and server are distributed on different HW.
For SLA max_ppm is set to 1000.

test
tool

pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Docker image. As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)

ref-
er-
ences

pktgen
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to loose, not
received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

116 Chapter 2. Yardstick User Guide

https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC010

Memory Latency
test case id OPNFV_YARDSTICK_TC010_MEMORY LA-

TENCY
metric Memory read latency (nanoseconds)
test purpose The purpose of TC010 is to evaluate the IaaS compute

performance with regards to memory read latency. It
measures the memory read latency for varying memory
sizes and strides. Whole memory hierarchy is measured.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool Lmbench
Lmbench is a suite of operating system microbench-
marks. This test uses lat_mem_rd tool from that suite
including:

• Context switching
• Networking: connection establishment, pipe,

TCP, UDP, and RPC hot potato
• File system creates and deletes
• Process creation
• Signal handling
• System call overhead
• Memory read latency

(LMbench is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with LMbench included.)

test description LMbench lat_mem_rd benchmark measures memory
read latency for varying memory sizes and strides.
The benchmark runs as two nested loops. The outer loop
is the stride size. The inner loop is the array size. For
each array size, the benchmark creates a ring of pointers
that point backward one stride. Traversing the array is
done by:

p = (char **)*p;

in a for loop (the over head of the for loop is not sig-
nificant; the loop is an unrolled loop 100 loads long).
The size of the array varies from 512 bytes to (typically)
eight megabytes. For the small sizes, the cache will have
an effect, and the loads will be much faster. This be-
comes much more apparent when the data is plotted.
Only data accesses are measured; the instruction cache
is not measured.
The results are reported in nanoseconds per load and
have been verified accurate to within a few nanoseconds
on an SGI Indy.

configuration File: opnfv_yardstick_tc010.yaml
• SLA (max_latency): 30 nanoseconds
• Stride - 128 bytes
• Stop size - 64 megabytes
• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.
SLA is optional. The SLA in this test case serves as an
example. Considerably lower read latency is expected.
However, to cover most configurations, both baremetal
and fully virtualized ones, this value should be possible
to achieve and acceptable for black box testing. Many
heavy IO applications start to suffer badly if the read
latency is higher than this.

applicability Test can be configured with different:
• strides;
• stop_size;
• iterations and intervals.

Default values exist.
SLA (optional) : max_latency: The maximum memory
latency that is accepted.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references LMbench lat_mem_rd
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. LMbench’s lat_mem_rd

tool is invoked and logs are produced and stored.
Result: logs are stored.

step 1 A host VM with LMbench installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.

‘lmbench_latency_benchmark’ bash script is copyied
from Jump Host to the host VM via the ssh tunnel.

step 3 ‘lmbench_latency_benchmark’ script is invoked. LM-
bench’s lat_mem_rd benchmark starts to measures
memory read latency for varying memory sizes and
strides. Memory read latency are recorded and checked
against the SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Test fails if the measured memory latency is above the

SLA value or if there is a test case execution problem.

2.16. Yardstick Test Cases 117

http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

Yardstick, Release Latest

118 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC011

Packet delay variation between VMs
test case id OPNFV_YARDSTICK_TC011_PACKET DELAY

VARIATION BETWEEN VMs
metric jitter: packet delay variation (ms)
test purpose The purpose of TC011 is to evaluate the IaaS network

performance with regards to network jitter (packet delay
variation). It measures the packet delay variation send-
ing the packets from one VM to the other.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool iperf3
iPerf3 is a tool for active measurements of the maximum
achievable bandwidth on IP networks. It supports tun-
ing of various parameters related to timing, buffers and
protocols. The UDP protocols can be used to measure
jitter delay.
(iperf3 is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Docker
image. As an example see the /yardstick/tools/ direc-
tory for how to generate a Linux image with pktgen in-
cluded.)

test description iperf3 test is invoked between a host VM and a target
VM.
Jitter calculations are continuously computed by the
server, as specified by RTP in RFC 1889. The client
records a 64 bit second/microsecond timestamp in the
packet. The server computes the relative transit time as
(server’s receive time - client’s send time). The client’s
and server’s clocks do not need to be synchronized; any
difference is subtracted outin the jitter calculation. Jitter
is the smoothed mean of differences between consecu-
tive transit times.

configuration File: opnfv_yardstick_tc011.yaml
• options: protocol: udp # The protocol used by

iperf3 tools # Send the given number of packets
without pausing: bandwidth: 20m

• runner: duration: 30 # Total test duration 30 sec-
onds.

• SLA (optional): jitter: 10 (ms) # The maximum
amount of jitter that is accepted.

applicability Test can be configured with different:
• bandwidth: Test case can be configured with different

bandwidth.
• duration: The test duration can be configured.
• jitter: SLA is optional. The SLA in this test case

serves as an example.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references iperf3
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with iperf3 included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 Two host VMs with iperf3 installed are booted, as server

and client.
step 2 Yardstick is connected with the host VM by using ssh.

A iperf3 server is started on the server VM via the ssh
tunnel.

step 3 iperf3 benchmark is invoked. Jitter is calculated and
check against the SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 The host VMs are deleted.
test verdict Test should not PASS if any jitter is above the optional

SLA value, or if there is a test case execution problem.

2.16. Yardstick Test Cases 119

https://iperf.fr/

Yardstick, Release Latest

120 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC012

Memory Bandwidth
test case id OPNFV_YARDSTICK_TC012_MEMORY BAND-

WIDTH
metric Memory read/write bandwidth (MBps)
test purpose The purpose of TC012 is to evaluate the IaaS compute

performance with regards to memory throughput. It
measures the rate at which data can be read from and
written to the memory (this includes all levels of mem-
ory).
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool LMbench
LMbench is a suite of operating system microbench-
marks. This test uses bw_mem tool from that suite in-
cluding:

• Cached file read
• Memory copy (bcopy)
• Memory read
• Memory write
• Pipe
• TCP

(LMbench is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with LMbench included.)

test description LMbench bw_mem benchmark allocates twice the spec-
ified amount of memory, zeros it, and then times the
copying of the first half to the second half. The bench-
mark is invoked in a host VM on a compute blade. Re-
sults are reported in megabytes moved per second.

configuration File: opnfv_yardstick_tc012.yaml
• SLA (optional): 15000 (MBps) min_bw: The

minimum amount of memory bandwidth that is
accepted.

• Size: 10 240 kB - test allocates twice that size
(20 480kB) zeros it and then measures the time it
takes to copy from one side to another.

• Benchmark: rdwr - measures the time to read data
into memory and then write data to the same lo-
cation.

• Warmup: 0 - the number of iterations to perform
before taking actual measurements.

• Iterations: 10 - test is run 10 times iteratively.
• Interval: 1 - there is 1 second delay between each

iteration.
SLA is optional. The SLA in this test case serves as an
example. Considerably higher bandwidth is expected.
However, to cover most configurations, both baremetal
and fully virtualized ones, this value should be pos-
sible to achieve and acceptable for black box testing.
Many heavy IO applications start to suffer badly if the
read/write bandwidths are lower than this.

applicability Test can be configured with different:
• memory sizes;
• memory operations (such as rd, wr, rdwr, cp, frd,

fwr, fcp, bzero, bcopy);
• number of warmup iterations;
• iterations and intervals.

Default values exist.
SLA (optional) : min_bandwidth: The minimun mem-
ory bandwidth that is accepted.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references LMbench bw_mem
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with Lmbench included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with LMbench installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.

“lmbench_bandwidth_benchmark” bash script is copied
from Jump Host to the host VM via ssh tunnel.

step 3 ‘lmbench_bandwidth_benchmark’ script is invoked.
LMbench’s bw_mem benchmark starts to measures
memory read/write bandwidth. Memory read/write
bandwidth results are recorded and checked against the
SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Test fails if the measured memory bandwidth is below

the SLA value or if there is a test case execution prob-
lem.

2.16. Yardstick Test Cases 121

http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

Yardstick, Release Latest

122 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC014

Processing speed
test case id OPNFV_YARDSTICK_TC014_PROCESSING

SPEED
metric score of single cpu running, score of parallel running
test purpose The purpose of TC014 is to evaluate the IaaS compute

performance with regards to CPU processing speed. It
measures score of single cpu running and parallel run-
ning.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool UnixBench
Unixbench is the most used CPU benchmarking soft-
ware tool. It can measure the performance of bash
scripts, CPUs in multithreading and single threading.
It can also measure the performance for parallel taks.
Also, specific disk IO for small and large files are per-
formed. You can use it to measure either linux dedicated
servers and linux vps servers, running CentOS, Debian,
Ubuntu, Fedora and other distros.
(UnixBench is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with UnixBench included.)

test description The UnixBench runs system benchmarks in a host VM
on a compute blade, getting information on the CPUs in
the system. If the system has more than one CPU, the
tests will be run twice – once with a single copy of each
test running at once, and once with N copies, where N
is the number of CPUs.
UnixBench will processs a set of results from a single
test by averaging the individal pass results into a single
final value.

configuration file: opnfv_yardstick_tc014.yaml
run_mode: Run unixbench in quiet mode or verbose
mode test_type: dhry2reg, whetstone and so on
For SLA with single_score and parallel_score, both can
be set by user, default is NA.

applicability Test can be configured with different:
• test types;
• dhry2reg;
• whetstone.

Default values exist.
SLA (optional) : min_score: The minimun UnixBench
score that is accepted.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references unixbench
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with unixbench included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with UnixBench installed is booted.
step 2 Yardstick is connected with the host VM by using

ssh. “unixbench_benchmark” bash script is copied from
Jump Host to the host VM via ssh tunnel.

step 3 UnixBench is invoked. All the tests are executed using
the “Run” script in the top-level of UnixBench directory.
The “Run” script will run a standard “index” test, and
save the report in the “results” directory. Then the report
is processed by “unixbench_benchmark” and checked
againsted the SLA.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

2.16. Yardstick Test Cases 123

https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench

Yardstick, Release Latest

124 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC015

Processing speed with impact on energy consumption and CPU load
test case id OPNFV_YARDSTICK_TC015_PROCESSING

SPEED
metric score of single cpu running, score of parallel running,

energy consumption cpu load
test purpose The purpose of TC015 is to evaluate the IaaS compute

performance with regards to CPU processing speed with
its impact on the energy consumption It measures score
of single cpu running and parallel running. Energy con-
sumption and cpu load are monitored while the cpu test
is running.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations, differ-
ent server types.

test tool UnixBench
Unixbench is the most used CPU benchmarking soft-
ware tool. It can measure the performance of bash
scripts, CPUs in multithreading and single threading.
It can also measure the performance for parallel tasks.
Also, specific disk IO for small and large files are per-
formed. You can use it to measure either linux dedicated
servers and linux vps servers, running CentOS, Debian,
Ubuntu, Fedora and other distros.
(UnixBench is not always part of a Linux distribution,
hence it needs to be installed. As an example see the
/yardstick/tools/ directory for how to generate a Linux
image with UnixBench included.)
Redfish API This HTTPS interface is provided by BMC
of every telco grade server. Is is a standard interface.

test description The UnixBench runs system benchmarks on a compute,
getting information on the CPUs in the system. If the
system has more than one CPU, the tests will be run
twice – once with a single copy of each test running at
once, and once with N N copies, where N is the number
of CPUs.
UnixBench will process a set of results from a single
test by averaging the individual pass results into a single
final value.
While the cpu test is running Energy scenario run in
background to monitor the number of watt consumed
by the compute server on the fly. The same is done us-
ing Cpuload scenario to monitor the overall percentage
of CPU used on the fly. This enables to balance the CPU
score with its impact on energy consumption. Synchro-
nized measurements enables to look at any relation be-
tween CPU load and energy consumption.

configuration file: opnfv_yardstick_tc015.yaml
run_mode: Run Energy and Cpuload in background

Run unixbench in quiet mode or verbose mode
test_type: dhry2reg, whetstone and so on

Duration and Interval are set globally for Energy and
Cpuload, aligned with duration of UnixBench test. SLA
can be set for each scenario type. Default is NA. For
SLA with single_score and parallel_score, both can be
set by user, default is NA.

applicability Test shall be applied to node context only It can be con-
figured with different:

• test types: dhry2reg, whetstone
Default values exist.
SLA (optional) : min_score: The minimun UnixBench
score that is accepted.

usability This test case is one of Yardstick’s generic test. Thus it
is runnable on most of the scenarios.

references unixbench
ETSI-NFV-TST001

pre-test conditions The target shall have unixbench installed on it.
test sequence description and expected result
step 1 Yardstick is connected with the target node using ssh.
step 2 Energy and Cpuload are launched silently in back-

ground one after the other. Then UnixBench is invoked.
All the tests are executed using the “Run” script in the
top-level of UnixBench directory. The “Run” script will
run a standard “index” test, and save the report in the
“results” directory. Then the report is processed by
“unixbench_benchmark” and checked against the SLA.
While unibench runs energy and cpu load are catched
periodically according to interval value.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16. Yardstick Test Cases 125

https://github.com/kdlucas/byte-unixbench/blob/master/UnixBench

Yardstick, Release Latest

Yardstick Test Case Description TC024

CPU Load
test case id OPNFV_YARDSTICK_TC024_CPU Load
metric CPU load
test purpose To evaluate the CPU load performance of the IaaS. This

test case should be run in parallel to other Yardstick test
cases and not run as a stand-alone test case. Average,
minimum and maximun values are obtained. The pur-
pose is also to be able to spot trends. Test results, graphs
and similar shall be stored for comparison reasons and
product evolution understanding between different OP-
NFV versions and/or configurations.

configuration file: cpuload.yaml (in the ‘samples’ directory)
• interval: 1 - repeat, pausing every 1 seconds in-

between.
• count: 10 - display statistics 10 times, then exit.

test tool mpstat
(mpstat is not always part of a Linux distribution, hence
it needs to be installed. It is part of the Yardstick Glance
image. However, if mpstat is not present the TC instead
uses /proc/stats as source to produce “mpstat” output.

references man-pages
applicability Test can be configured with different:

• interval;
• count;
• runner Iteration and intervals.

There are default values for each above-mentioned op-
tion. Run in background with other test cases.

pre-test conditions The test case image needs to be installed into Glance
with mpstat included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed. The related TC, or TCs, is invoked

and mpstat logs are produced and stored.
Result: Stored logs

test verdict None. CPU load results are fetched and stored.

126 Chapter 2. Yardstick User Guide

http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

Yardstick, Release Latest

Yardstick Test Case Description TC037

Latency, CPU Load, Throughput, Packet Loss
test case id OPNFV_YARDSTICK_TC037_LATENCY,CPU

LOAD,THROUGHPUT, PACKET LOSS
metric Number of flows, latency, throughput, packet loss CPU

utilization percentage, CPU interrupt per second
test purpose The purpose of TC037 is to evaluate the IaaS compute

capacity and network performance with regards to CPU
utilization, packet flows and network throughput, such
as if and how different amounts of flows matter for the
throughput between hosts on different compute blades,
and the CPU load variation.
Typically e.g. the performance of a vSwitch depends
on the number of flows running through it. Also perfor-
mance of other equipment or entities can depend on the
number of flows or the packet sizes used
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool Ping, Pktgen, mpstat
Ping is a computer network administration software util-
ity used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time
for packet sent from the originating host to a destination
computer that are echoed back to the source.
Linux packet generator is a tool to generate packets at
very high speed in the kernel. pktgen is mainly used to
drive and LAN equipment test network. pktgen supports
multi threading. To generate random MAC address, IP
address, port number UDP packets, pktgen uses multi-
ple CPU processors in the different PCI bus (PCI, PCIe
bus) with Gigabit Ethernet tested (pktgen performance
depends on the CPU processing speed, memory delay,
PCI bus speed hardware parameters), Transmit data rate
can be even larger than 10GBit/s. Visible can satisfy
most card test requirements.
The mpstat command writes to standard output activi-
ties for each available processor, processor 0 being the
first one. Global average activities among all processors
are also reported. The mpstat command can be used
both on SMP and UP machines, but in the latter, only
global average activities will be printed.
(Ping is normally part of any Linux distribution, hence
it doesn’t need to be installed. It is also part of the Yard-
stick Docker image. For example also a Cirros image
can be downloaded from cirros-image, it includes ping.
Pktgen and mpstat are not always part of a Linux dis-
tribution, hence it needs to be installed. It is part of the
Yardstick Docker image. As an example see the /yard-
stick/tools/ directory for how to generate a Linux image
with pktgen and mpstat included.)

test description This test case uses Pktgen to generate packet flow be-
tween two hosts for simulating network workloads on
the SUT. Ping packets (ICMP protocol’s mandatory
ECHO_REQUEST datagram) are sent from a host VM
to the target VM(s) to elicit ICMP ECHO_RESPONSE,
meanwhile CPU activities are monitored by mpstat.

configuration file: opnfv_yardstick_tc037.yaml
Packet size is set to 64 bytes. Number of ports: 1, 10,
50, 100, 300, 500, 750 and 1000. The amount config-
ured ports map from 2 up to 1001000 flows, respec-
tively. Each port amount is run two times, for 20 sec-
onds each. Then the next port_amount is run, and so
on. During the test CPU load on both client and server,
and the network latency between the client and server
are measured. The client and server are distributed on
different hardware. mpstat monitoring interval is set to
1 second. ping packet size is set to 100 bytes. For SLA
max_ppm is set to 1000.

applicability Test can be configured with different:
• pktgen packet sizes;
• amount of flows;
• test duration;
• ping packet size;
• mpstat monitor interval.

Default values exist.
SLA (optional): max_ppm: The number of packets per
million packets sent that are acceptable to loose, not re-
ceived.

references Ping
mpstat
pktgen
ETSI-NFV-TST001

pre-test conditions The test case image needs to be installed into Glance
with pktgen, mpstat included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 Two host VMs are booted, as server and client.
step 2 Yardstick is connected with the server VM by us-

ing ssh. ‘pktgen_benchmark’, “ping_benchmark” bash
script are copyied from Jump Host to the server VM via
the ssh tunnel.

step 3 An IP table is setup on server to monitor for received
packets.

step 4 pktgen is invoked to generate packet flow between two
server and client for simulating network workloads on
the SUT. Ping is invoked. Ping packets are sent from
server VM to client VM. mpstat is invoked, recording
activities for each available processor. Results are pro-
cessed and checked against the SLA. Logs are produced
and stored.
Result: Logs are stored.

step 5 Two host VMs are deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

2.16. Yardstick Test Cases 127

https://download.cirros-cloud.net
https://linux.die.net/man/8/ping
http://www.linuxcommand.org/man_pages/mpstat1.html
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC038

Latency, CPU Load, Throughput, Packet Loss (Extended measurements)
test
case
id

OPNFV_YARDSTICK_TC038_Latency,CPU Load,Throughput,Packet Loss

met-
ric

Number of flows, latency, throughput, CPU load, packet loss

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how
different amounts of flows matter for the throughput between hosts on different compute blades. Typically
e.g. the performance of a vSwitch depends on the number of flows running through it. Also performance
of other equipment or entities can depend on the number of flows or the packet sizes used. The purpose is
also to be able to spot trends. Test results, graphs ans similar shall be stored for comparison reasons and
product evolution understanding between different OPNFV versions and/or configurations.

con-
figu-
ration

file: opnfv_yardstick_tc038.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount configured
ports map from 2 up to 1001000 flows, respectively. Each port amount is run ten times, for 20 seconds
each. Then the next port_amount is run, and so on. During the test CPU load on both client and server,
and the network latency between the client and server are measured. The client and server are distributed
on different HW. For SLA max_ppm is set to 1000.

test
tool

pktgen
(Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Glance image. As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of the
Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
mpstat
(Mpstat is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Glance image.

refer-
ences

Ping and Mpstat man pages
pktgen
ETSI-NFV-TST001

appli-
cabil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to loose,
not received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step 1 The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

128 Chapter 2. Yardstick User Guide

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC042

Network Performance
test case id OPNFV_YARDSTICK_TC042_DPDK pktgen latency

measurements
metric L2 Network Latency
test purpose Measure L2 network latency when DPDK is enabled be-

tween hosts on different compute blades.
configuration file: opnfv_yardstick_tc042.yaml

• Packet size: 64 bytes
• SLA(max_latency): 100usec

test tool DPDK Pktgen-dpdk
(DPDK and Pktgen-dpdk are not part of a Linux distri-
bution, hence they needs to be installed. As an example
see the /yardstick/tools/ directory for how to generate a
Linux image with DPDK and pktgen-dpdk included.)

references DPDK
Pktgen-dpdk
ETSI-NFV-TST001

applicability Test can be configured with different packet sizes. De-
fault values exist.

pre-test conditions The test case image needs to be installed into Glance
with DPDK and pktgen-dpdk included in it.
The NICs of compute nodes must support DPDK on
POD.
And at least compute nodes setup hugepage.
If you want to achievement a hight performance result,
it is recommend to use NUAM, CPU pin, OVS and so
on.

test sequence description and expected result
step 1 The hosts are installed on different blades, as server and

client. Both server and client have three interfaces. The
first one is management such as ssh. The other two are
used by DPDK.

step 2 Testpmd is invoked with configurations to forward
packets from one DPDK port to the other on server.

step 3 Pktgen-dpdk is invoked with configurations as a traffic
generator and logs are produced and stored on client.
Result: Logs are stored.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16. Yardstick Test Cases 129

http://dpdk.org/doc/guides/index.html
https://pktgen-dpdk.readthedocs.io/en/latest/index.html
http://dpdk.org/doc/guides/index.html
https://pktgen-dpdk.readthedocs.io/en/latest/index.html
http://dpdk.org/doc/guides/testpmd_app_ug/index.html

Yardstick, Release Latest

Yardstick Test Case Description TC043

Network Latency Between NFVI Nodes
test case id OPNFV_YARDSTICK_TC043_LATENCY_BETWEEN_NFVI_NODES
metric RTT (Round Trip Time)
test purpose The purpose of TC043 is to do a basic verification that

network latency is within acceptable boundaries when
packets travel between different NFVI nodes.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool ping
Ping is a computer network administration software util-
ity used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time
for packet sent from the originating host to a destination
computer that are echoed back to the source.

test topology Ping packets (ICMP protocol’s mandatory
ECHO_REQUEST datagram) are sent from host
node to target node to elicit ICMP ECHO_RESPONSE.

configuration file: opnfv_yardstick_tc043.yaml
Packet size 100 bytes. Total test duration 600 seconds.
One ping each 10 seconds. SLA RTT is set to maximum
10 ms.

applicability This test case can be configured with different:
• packet sizes;
• burst sizes;
• ping intervals;
• test durations;
• test iterations.

Default values exist.
SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also
normal to achieve in balanced L2 environments. How-
ever, to cover most configurations, both bare metal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing. Many real
time applications start to suffer badly if the RTT time is
higher than this. Some may suffer bad also close to this
RTT, while others may not suffer at all. It is a compro-
mise that may have to be tuned for different configura-
tion purposes.

references Ping
ETSI-NFV-TST001

pre_test conditions Each pod node must have ping included in it.
test sequence description and expected result
step 1 Yardstick is connected with the NFVI node by using ssh.

‘ping_benchmark’ bash script is copyied from Jump
Host to the NFVI node via the ssh tunnel.

step 2 Ping is invoked. Ping packets are sent from server node
to client node. RTT results are calculated and checked
against the SLA. Logs are produced and stored.
Result: Logs are stored.

test verdict Test should not PASS if any RTT is above the optional
SLA value, or if there is a test case execution problem.130 Chapter 2. Yardstick User Guide

https://linux.die.net/man/8/ping

Yardstick, Release Latest

Yardstick Test Case Description TC044

Memory Utilization
test case id OPNFV_YARDSTICK_TC044_Memory Utilization
metric Memory utilization
test purpose To evaluate the IaaS compute capability with regards

to memory utilization.This test case should be run in
parallel to other Yardstick test cases and not run as a
stand-alone test case. Measure the memory usage statis-
tics including used memory, free memory, buffer, cache
and shared memory. Both average and maximun val-
ues are obtained. The purpose is also to be able to spot
trends. Test results, graphs and similar shall be stored
for comparison reasons and product evolution under-
standing between different OPNFV versions and/or con-
figurations.

configuration File: memload.yaml (in the ‘samples’ directory)
• interval: 1 - repeat, pausing every 1 seconds in-

between.
• count: 10 - display statistics 10 times, then exit.

test tool free
free provides information about unused and used mem-
ory and swap space on any computer running Linux or
another Unix-like operating system. free is normally
part of a Linux distribution, hence it doesn’t needs to
be installed.

references man-pages
ETSI-NFV-TST001

applicability Test can be configured with different:
• interval;
• count;
• runner Iteration and intervals.

There are default values for each above-mentioned op-
tion. Run in background with other test cases.

pre-test conditions The test case image needs to be installed into Glance
with free included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. The related TC, or TCs,

is invoked and free logs are produced and stored.
Result: logs are stored.

test verdict None. Memory utilization results are fetched and
stored.

2.16. Yardstick Test Cases 131

http://manpages.ubuntu.com/manpages/xenial/en/man1/free.1.html

Yardstick, Release Latest

Yardstick Test Case Description TC055

Compute Capacity
test
case
id

OPNFV_YARDSTICK_TC055_Compute Capacity

met-
ric

Number of cpus, number of cores, number of threads, available memory size and total cache size.

test
pur-
pose

To evaluate the IaaS compute capacity with regards to hardware specification, including number of cpus,
number of cores, number of threads, available memory size and total cache size. Test results, graphs
and similar shall be stored for comparison reasons and product evolution understanding between different
OPNFV versions and/or configurations.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc055.yaml
There is are no additional configurations to be set for this TC.

test
tool

/proc/cpuinfo
this TC uses /proc/cpuinfo as source to produce compute capacity output.

refer-
ences

/proc/cpuinfo
ETSI-NFV-TST001

ap-
pli-
ca-
bility

None.

pre-
test
con-
di-
tions

No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, TC is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

None. Hardware specification are fetched and stored.

132 Chapter 2. Yardstick User Guide

http://www.linfo.org/proc_cpuinfo.html

Yardstick, Release Latest

Yardstick Test Case Description TC061

Network Utilization
test case id OPNFV_YARDSTICK_TC061_Network Utilization
metric Network utilization
test purpose To evaluate the IaaS network capability with regards

to network utilization, including Total number of pack-
ets received per second, Total number of packets trans-
mitted per second, Total number of kilobytes received
per second, Total number of kilobytes transmitted per
second, Number of compressed packets received per
second (for cslip etc.), Number of compressed pack-
ets transmitted per second, Number of multicast pack-
ets received per second, Utilization percentage of the
network interface. This test case should be run in paral-
lel to other Yardstick test cases and not run as a stand-
alone test case. Measure the network usage statistics
from the network devices Average, minimum and max-
imun values are obtained. The purpose is also to be able
to spot trends. Test results, graphs and similar shall be
stored for comparison reasons and product evolution un-
derstanding between different OPNFV versions and/or
configurations.

configuration File: netutilization.yaml (in the ‘samples’ directory)
• interval: 1 - repeat, pausing every 1 seconds in-

between.
• count: 1 - display statistics 1 times, then exit.

test tool sar
The sar command writes to standard output the contents
of selected cumulative activity counters in the operat-
ing system. sar is normally part of a Linux distribution,
hence it doesn’t needs to be installed.

references man-pages
ETSI-NFV-TST001

applicability Test can be configured with different:
• interval;
• count;
• runner Iteration and intervals.

There are default values for each above-mentioned op-
tion. Run in background with other test cases.

pre-test conditions The test case image needs to be installed into Glance
with sar included in the image.
No POD specific requirements have been identified.

test sequence description and expected result.
step 1 The host is installed as client. The related TC, or TCs,

is invoked and sar logs are produced and stored.
Result: logs are stored.

test verdict None. Network utilization results are fetched and
stored.

2.16. Yardstick Test Cases 133

http://linux.die.net/man/1/sar

Yardstick, Release Latest

Yardstick Test Case Description TC063

Storage Capacity
test case id OPNFV_YARDSTICK_TC063_Storage Capacity
metric Storage/disk size, block size Disk Utilization
test purpose This test case will check the parameters which could

decide several models and each model has its specified
task to measure. The test purposes are to measure disk
size, block size and disk utilization. With the test re-
sults, we could evaluate the storage capacity of the host.

configuration
file: opnfv_yardstick_tc063.yaml

• test_type: “disk_size”
• runner: type: Iteration iterations: 1 - test is run

1 time iteratively.

test tool fdisk A command-line utility that provides disk parti-
tioning functions
iostat This is a computer system monitor tool used to
collect and show operating system storage input and
output statistics.

references iostat fdisk
ETSI-NFV-TST001

applicability Test can be configured with different:
• test_type: “disk size”, “block size”, “disk utiliza-

tion”
• interval: 1 - how ofter to stat disk utilization

type: int unit: seconds
• count: 15 - how many times to stat disk utilization

type: int unit: na
There are default values for each above-mentioned op-
tion. Run in background with other test cases.

pre-test conditions The test case image needs to be installed into Glance
No POD specific requirements have been identified.

test sequence Output the specific storage capacity of disk information
as the sequence into file.

step 1 The pod is available and the hosts are installed. Node5
is used and logs are produced and stored.
Result: Logs are stored.

test verdict None.

134 Chapter 2. Yardstick User Guide

http://linux.die.net/man/1/iostat
http://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html

Yardstick, Release Latest

Yardstick Test Case Description TC069

Memory Bandwidth
test case id OPNFV_YARDSTICK_TC069_Memory Bandwidth
metric Megabyte per second (MBps)
test purpose To evaluate the IaaS compute performance with regards

to memory bandwidth. Measure the maximum possi-
ble cache and memory performance while reading and
writing certain blocks of data (starting from 1Kb and
further in power of 2) continuously through ALU and
FPU respectively. Measure different aspects of mem-
ory performance via synthetic simulations. Each simu-
lation consists of four performances (Copy, Scale, Add,
Triad). Test results, graphs and similar shall be stored
for comparison reasons and product evolution under-
standing between different OPNFV versions and/or con-
figurations.

configuration File: opnfv_yardstick_tc069.yaml
• SLA (optional): 7000 (MBps) min_bandwidth:

The minimum amount of memory bandwidth that
is accepted.

• type_id: 1 - runs a specified benchmark (by an ID
number):

1 -- INTmark [writing] 4 --
→˓ FLOATmark [writing]
2 -- INTmark [reading] 5 --
→˓ FLOATmark [reading]
3 -- INTmem 6 --
→˓ FLOATmem

• block_size: 64 Megabytes - the maximum block
size per array.

• load: 32 Gigabytes - the amount of data load per
pass.

• iterations: 5 - test is run 5 times iteratively.
• interval: 1 - there is 1 second delay between each

iteration.

test tool RAMspeed
RAMspeed is a free open source command line utility
to measure cache and memory performance of computer
systems. RAMspeed is not always part of a Linux dis-
tribution, hence it needs to be installed in the test image.

references RAMspeed
ETSI-NFV-TST001

applicability Test can be configured with different:
• benchmark operations (such as INTmark [writ-

ing], INTmark [reading], FLOATmark [writing],
FLOATmark [reading], INTmem, FLOATmem);

• block size per array;
• load per pass;
• number of batch run iterations;
• iterations and intervals.

There are default values for each above-mentioned op-
tion.

pre-test conditions The test case image needs to be installed into Glance
with RAmspeed included in the image.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 The host is installed as client. RAMspeed is invoked

and logs are produced and stored.
Result: logs are stored.

test verdict Test fails if the measured memory bandwidth is below
the SLA value or if there is a test case execution prob-
lem.

2.16. Yardstick Test Cases 135

http://alasir.com/software/ramspeed/

Yardstick, Release Latest

Yardstick Test Case Description TC070

Latency, Memory Utilization, Throughput, Packet Loss
test
case
id

OPNFV_YARDSTICK_TC070_Latency, Memory Utilization, Throughput,Packet Loss

met-
ric

Number of flows, latency, throughput, Memory Utilization, packet loss

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of flows matter for the throughput between hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of flows running through it. Also performance of other
equipment or entities can depend on the number of flows or the packet sizes used. The purpose is also to
be able to spot trends. Test results, graphs and similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc070.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount configured
ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times, for 20 seconds
each. Then the next port_amount is run, and so on. During the test Memory Utilization on both client
and server, and the network latency between the client and server are measured. The client and server are
distributed on different HW. For SLA max_ppm is set to 1000.

test
tool

pktgen
Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Glance image. (As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of the
Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
free
free provides information about unused and used memory and swap space on any computer running Linux
or another Unix-like operating system. free is normally part of a Linux distribution, hence it doesn’t needs
to be installed.

ref-
er-
ences

Ping and free man pages
pktgen
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to lose, not
received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

136 Chapter 2. Yardstick User Guide

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC071

Latency, Cache Utilization, Throughput, Packet Loss
test
case
id

OPNFV_YARDSTICK_TC071_Latency, Cache Utilization, Throughput,Packet Loss

met-
ric

Number of flows, latency, throughput, Cache Utilization, packet loss

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of flows matter for the throughput between hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of flows running through it. Also performance of other
equipment or entities can depend on the number of flows or the packet sizes used. The purpose is also to
be able to spot trends. Test results, graphs and similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc071.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount configured
ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times, for 20 seconds
each. Then the next port_amount is run, and so on. During the test Cache Utilization on both client and
server, and the network latency between the client and server are measured. The client and server are
distributed on different HW. For SLA max_ppm is set to 1000.

test
tool

pktgen
Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Glance image. (As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of the
Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
cachestat
cachestat is not always part of a Linux distribution, hence it needs to be installed.

ref-
er-
ences

Ping man pages
pktgen
cachestat
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to lose, not
received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 137

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt
https://github.com/brendangregg/perf-tools/tree/master/fs

Yardstick, Release Latest

Yardstick Test Case Description TC072

Latency, Network Utilization, Throughput, Packet Loss
test
case
id

OPNFV_YARDSTICK_TC072_Latency, Network Utilization, Throughput,Packet Loss

met-
ric

Number of flows, latency, throughput, Network Utilization, packet loss

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of flows matter for the throughput between hosts on different compute blades. Typically e.g. the
performance of a vSwitch depends on the number of flows running through it. Also performance of other
equipment or entities can depend on the number of flows or the packet sizes used. The purpose is also to
be able to spot trends. Test results, graphs and similar shall be stored for comparison reasons and product
evolution understanding between different OPNFV versions and/or configurations.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc072.yaml
Packet size: 64 bytes Number of ports: 1, 10, 50, 100, 300, 500, 750 and 1000. The amount configured
ports map from 2 up to 1001000 flows, respectively. Each port amount is run two times, for 20 seconds
each. Then the next port_amount is run, and so on. During the test Network Utilization on both client
and server, and the network latency between the client and server are measured. The client and server are
distributed on different HW. For SLA max_ppm is set to 1000.

test
tool

pktgen
Pktgen is not always part of a Linux distribution, hence it needs to be installed. It is part of the Yardstick
Glance image. (As an example see the /yardstick/tools/ directory for how to generate a Linux image with
pktgen included.)
ping
Ping is normally part of any Linux distribution, hence it doesn’t need to be installed. It is also part of the
Yardstick Glance image. (For example also a cirros image can be downloaded, it includes ping)
sar
The sar command writes to standard output the contents of selected cumulative activity counters in the
operating system. sar is normally part of a Linux distribution, hence it doesn’t needs to be installed.

ref-
er-
ences

Ping and sar man pages
pktgen
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes, amount of flows and test duration. Default values exist.
SLA (optional): max_ppm: The number of packets per million packets sent that are acceptable to lose, not
received.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with pktgen included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

The hosts are installed, as server and client. pktgen is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

138 Chapter 2. Yardstick User Guide

https://download.cirros-cloud.net
https://www.kernel.org/doc/Documentation/networking/pktgen.txt

Yardstick, Release Latest

Yardstick Test Case Description TC073

Throughput per NFVI node test
test
case
id

OPNFV_YARDSTICK_TC073_Network latency and throughput between nodes

met-
ric

Network latency and throughput

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of packet sizes and flows matter for the throughput between nodes in one pod.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc073.yaml
Packet size: default 1024 bytes.
Test length: default 20 seconds.
The client and server are distributed on different nodes.
For SLA max_mean_latency is set to 100.

test
tool

netperf Netperf is a software application that provides network bandwidth testing between two hosts on
a network. It supports Unix domain sockets, TCP, SCTP, DLPI and UDP via BSD Sockets. Netperf
provides a number of predefined tests e.g. to measure bulk (unidirectional) data transfer or request response
performance. (netperf is not always part of a Linux distribution, hence it needs to be installed.)

ref-
er-
ences

netperf Man pages ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes and test duration. Default values exist.
SLA (optional): max_mean_latency

pre-
test
con-
di-
tions

The POD can be reached by external ip and logged on via ssh

test
se-
quence

description and expected result

step
1

Install netperf tool on each specified node, one is as the server, and the other as the client.

step
2

Log on to the client node and use the netperf command to execute the network performance test

step
3

The throughput results stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 139

https://hewlettpackard.github.io/netperf/

Yardstick, Release Latest

Yardstick Test Case Description TC074

Storperf
test case id OPNFV_YARDSTICK_TC074_Storperf
metric Storage performance
test purpose To evaluate and report on the Cinder volume perfor-

mance.
This testcase integrates with OPNFV StorPerf to mea-
sure block performance of the underlying Cinder
drivers. Many options are supported, and even the root
disk (Glance ephemeral storage can be profiled.
The fundamental concept of the test case is to first fill
the volumes with random data to ensure reported met-
rics are indicative of continued usage and not skewed
by transitional performance while the underlying stor-
age driver allocates blocks. The metrics for filling the
volumes with random data are not reported in the final
results. The test also ensures the volumes are perform-
ing at a consistent level of performance by measuring
metrics every minute, and comparing the trend of the
metrics over the run. By evaluating the min and max
values, as well as the slope of the trend, it can make the
determination that the metrics are stable, and not fluctu-
ating beyond industry standard norms.

configuration file: opnfv_yardstick_tc074.yaml
• agent_count: 1 - the number of VMs to be created
• agent_image: “Ubuntu-14.04” - image used for

creating VMs
• public_network: “ext-net” - name of public net-

work
• volume_size: 2 - cinder volume size
• block_sizes: “4096” - data block size
• queue_depths: “4” - the number of simultaneous

I/Os to perform at all times
• StorPerf_ip: “192.168.200.2”
• query_interval: 10 - state query interval
• timeout: 600 - maximum allowed job time

test tool Storperf
StorPerf is a tool to measure block and object storage
performance in an NFVI.
StorPerf is delivered as a Docker container from https:
//hub.docker.com/r/opnfv/storperf-master/tags/.
The underlying tool used is FIO, and StorPerf supports
any FIO option in order to tailor the test to the exact
workload needed.

references Storperf
ETSI-NFV-TST001

applicability Test can be configured with different:
• agent_count
• volume_size
• block_sizes
• queue_depths
• query_interval
• timeout
• target=[device or path] The path to either an at-

tached storage device (/dev/vdb, etc) or a direc-
tory path (/opt/storperf) that will be used to exe-
cute the performance test. In the case of a device,
the entire device will be used. If not specified, the
current directory will be used.

• workload=[workload module] If not specified, the
default is to run all workloads. The workload
types are:

– rs: 100% Read, sequential data
– ws: 100% Write, sequential data
– rr: 100% Read, random access
– wr: 100% Write, random access
– rw: 70% Read / 30% write, random access

measurements.
• workloads={json maps} This parameter su-

percedes the workload and calls the V2.0 API in
StorPerf. It allows for greater control of the pa-
rameters to be passed to FIO. For example, run-
ning a random read/write with a mix of 90% read
and 10% write would be expressed as follows:
{“9010randrw”: {“rw”:”randrw”,”rwmixread”:
“90”}} Note: This must be passed in as a string,
so don’t forget to escape or otherwise properly
deal with the quotes.

• report= [job_id] Query the status of the supplied
job_id and report on metrics. If a workload is sup-
plied, will report on only that subset.

• availability_zone: Specify the availability zone
which the stack will use to create instances.

• volume_type: Cinder volumes can have different
types, for example encrypted vs. not encrypted.
To be able to profile the difference between the
two.

• subnet_CIDR: Specify subnet CIDR of private
network

• stack_name: Specify the name of the stack that
will be created, the default: “StorperfAgent-
Group”

• volume_count: Specify the number of volumes
per virtual machines
There are default values for each above-
mentioned option.

pre-test conditions If you do not have an Ubuntu 14.04 image in Glance,
you will need to add one.
Storperf is required to be installed in the environment.
There are two possible methods for Storperf installation:

• Run container on Jump Host
• Run container in a VM

Running StorPerf on Jump Host Requirements:
• Docker must be installed
• Jump Host must have access to the OpenStack

Controller API
• Jump Host must have internet connectivity for

downloading docker image
• Enough floating IPs must be available to match

your agent count
Running StorPerf in a VM Requirements:

• VM has docker installed
• VM has OpenStack Controller credentials and

can communicate with the Controller API
• VM has internet connectivity for downloading the

docker image
• Enough floating IPs must be available to match

your agent count
No POD specific requirements have been identified.

test sequence description and expected result
step 1 Yardstick calls StorPerf to create the heat stack with the

number of VMs and size of Cinder volumes specified.
The VMs will be on their own private subnet, and take
floating IP addresses from the specified public network.

step 2 Yardstick calls StorPerf to fill all the volumes with ran-
dom data.

step 3 Yardstick calls StorPerf to perform the series of tests
specified by the workload, queue depths and block sizes.

step 4 Yardstick calls StorPerf to delete the stack it created.
test verdict None. Storage performance results are fetched and

stored.

140 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/display/storperf/Storperf
https://hub.docker.com/r/opnfv/storperf-master/tags/
https://hub.docker.com/r/opnfv/storperf-master/tags/
https://wiki.opnfv.org/display/storperf/Storperf

Yardstick, Release Latest

Yardstick Test Case Description TC075

Network Capacity and Scale Testing
test case id OPNFV_YARDSTICK_TC075_Network_Capacity_and_Scale_testing
metric Number of connections, Number of frames sent/received
test purpose To evaluate the network capacity and scale with regards to connections and frmaes.
configuration file: opnfv_yardstick_tc075.yaml

There is no additional configuration to be set for this TC.
test tool netstar

Netstat is normally part of any Linux distribution, hence it doesn’t need to be installed.
references Netstat man page

ETSI-NFV-TST001
applicability This test case is mainly for evaluating network performance.
pre_test condi-
tions

Each pod node must have netstat included in it.

test sequence description and expected result
step 1 The pod is available. Netstat is invoked and logs are produced and stored.

Result: Logs are stored.
test verdict None. Number of connections and frames are fetched and stored.

2.16. Yardstick Test Cases 141

Yardstick, Release Latest

Yardstick Test Case Description TC076

Monitor Network Metrics
test
case
id

OPNFV_YARDSTICK_TC076_Monitor_Network_Metrics

met-
ric

IP datagram error rate, ICMP message error rate, TCP segment error rate and UDP datagram error rate

test
pur-
pose

The purpose of TC076 is to evaluate the IaaS network reliability with regards to IP datagram error rate,
ICMP message error rate, TCP segment error rate and UDP datagram error rate.
TC076 monitors network metrics provided by the Linux kernel in a host and calculates IP datagram error
rate, ICMP message error rate, TCP segment error rate and UDP datagram error rate.
The purpose is also to be able to spot the trends. Test results, graphs and similar shall be stored for compari-
son reasons and product evolution understanding between different OPNFV versions and/or configurations.

test
tool

nstat
nstat is a simple tool to monitor kernel snmp counters and network interface statistics.
(nstat is not always part of a Linux distribution, hence it needs to be installed. nstat is provided by the
iproute2 collection, which is usually also the name of the package in many Linux distributions.As an example
see the /yardstick/tools/ directory for how to generate a Linux image with iproute2 included.)

test
de-
scrip-
tion

Ping packets (ICMP protocol’s mandatory ECHO_REQUEST datagram) are sent from host VM to target
VM(s) to elicit ICMP ECHO_RESPONSE.
nstat is invoked on the target vm to monitors network metrics provided by the Linux kernel.

con-
fig-
u-
ra-
tion

file: opnfv_yardstick_tc076.yaml
There is no additional configuration to be set for this TC.

ref-
er-
ences

nstat man page
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

This test case is mainly for monitoring network metrics.

pre_test
con-
di-
tions

The test case image needs to be installed into Glance with fio included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step
1

Two host VMs are booted, as server and client.

step
2

Yardstick is connected with the server VM by using ssh. ‘ping_benchmark’ bash script is copyied from
Jump Host to the server VM via the ssh tunnel.

step
3

Ping is invoked. Ping packets are sent from server VM to client VM. RTT results are calculated and checked
against the SLA. nstat is invoked on the client vm to monitors network metrics provided by the Linux kernel.
IP datagram error rate, ICMP message error rate, TCP segment error rate and UDP datagram error rate are
calculated. Logs are produced and stored.
Result: Logs are stored.

step
4

Two host VMs are deleted.

test
ver-
dict

None.
142 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 143

Yardstick, Release Latest

Yardstick Test Case Description TC078

Compute Performance
test case id OPNFV_YARDSTICK_TC078_SPEC CPU 2006
metric compute-intensive performance
test purpose The purpose of TC078 is to evaluate the IaaS compute

performance by using SPEC CPU 2006 benchmark.
The SPEC CPU 2006 benchmark has several different
ways to measure computer performance. One way is to
measure how fast the computer completes a single task;
this is called a speed measurement. Another way is to
measure how many tasks computer can accomplish in a
certain amount of time; this is called a throughput, ca-
pacity or rate measurement.

test tool SPEC CPU 2006
The SPEC CPU 2006 benchmark is SPEC’s industry-
standardized, CPU-intensive benchmark suite, stressing
a system’s processor, memory subsystem and compiler.
This benchmark suite includes the SPECint bench-
marks and the SPECfp benchmarks. The SPECint 2006
benchmark contains 12 different enchmark tests and the
SPECfp 2006 benchmark contains 19 different bench-
mark tests.
SPEC CPU 2006 is not always part of a Linux
distribution. SPEC requires that users purchase a
license and agree with their terms and conditions.
For this test case, users must manually download
cpu2006-1.2.iso from the SPEC website and save
it under the yardstick/resources folder (e.g. /home/
opnfv/repos/yardstick/yardstick/resources/cpu2006-
1.2.iso) SPEC CPU® 2006 benchmark is avail-
able for purchase via the SPEC order form
(https://www.spec.org/order.html).

test description This test case uses SPEC CPU 2006 benchmark to mea-
sure compute-intensive performance of hosts.

configuration file: spec_cpu.yaml (in the ‘samples’ directory)
benchmark_subset is set to int.
SLA is not available in this test case.

applicability Test can be configured with different:
• benchmark_subset - a subset of SPEC CPU2006

benchmarks to run;
• SPECint_benchmark - a SPECint benchmark to

run;
• SPECint_benchmark - a SPECfp benchmark to

run;
• output_format - desired report format;
• runspec_config - SPEC CPU2006 config file pro-

vided to the runspec binary;
• runspec_iterations - the number of benchmark it-

erations to execute. For a reportable run, must be
3;

• runspec_tune - tuning to use (base, peak, or all).
For a reportable run, must be either base or all.
Reportable runs do base first, then (optionally)
peak;

• runspec_size - size of input data to run (test, train,
or ref). Reportable runs ensure that your binaries
can produce correct results with the test and train
workloads

usability This test case is used for executing SPEC CPU 2006
benchmark physical servers. The SPECint 2006 bench-
mark takes approximately 5 hours.

references spec_cpu2006
ETSI-NFV-TST001

pre-test conditions
To run and install SPEC CPU2006, the following are required:

• For SPECint2006: Both C99 and C++98
compilers;

• For SPECfp2006: All three of C99, C++98
and Fortran-95 compilers;

• At least 8GB of disk space availabile on the
system.

test sequence description and expected result
step 1 cpu2006-1.2.iso has been saved un-

der the yardstick/resources folder (e.g.
/home/opnfv/repos/yardstick/yardstick/resources
/cpu2006-1.2.iso). Additional, to use your custom
runspec config file you can save it under the yard-
stick/resources/ files folder and specify the config file
name in the runspec_config parameter.

step 2 Upload SPEC CPU2006 ISO to the target server and in-
stall SPEC CPU2006 via ansible.

step 3 Yardstick is connected with the target server by using
ssh. If custom runspec config file is used, this file is
copyied from yardstick to the target server via the ssh
tunnel.

step 4 SPEC CPU2006 benchmark is invoked and SPEC CPU
2006 metrics are generated.

step 5 Text, HTML, CSV, PDF, and Configuration file out-
puts for the SPEC CPU 2006 metrics are fetch from the
server and stored under /tmp/result folder.

step 6 uninstall SPEC CPU2006 and remove cpu2006-1.2.iso
from the target server .

test verdict None. SPEC CPU2006 results are collected and stored.

144 Chapter 2. Yardstick User Guide

https://www.spec.org/order.html
https://www.spec.org/cpu2006/

Yardstick, Release Latest

2.16. Yardstick Test Cases 145

Yardstick, Release Latest

Yardstick Test Case Description TC079

Storage Performance
test case id OPNFV_YARDSTICK_TC079_Bonnie++
metric Sequential Input/Output and Sequential/Random Create

speed and CPU useage.
test purpose The purpose of TC078 is to evaluate the IaaS storage

performance with regards to Sequential Input/Output
and Sequential/Random Create speed and CPU useage
statistics.

test tool Bonnie++
Bonnie++ is a disk and file system benchmarking tool
for measuring I/O performance. With Bonnie++ you
can quickly and easily produce a meaningful value to
represent your current file system performance.
Bonnie++ is not always part of a Linux distribution,
hence it needs to be installed in the test image.

test description
This test case uses Bonnie++ to perform the tests below:

• Create files in sequential order
• Stat files in sequential order
• Delete files in sequential order
• Create files in random order
• Stat files in random order
• Delete files in random order

configuration file: bonnie++.yaml (in the ‘samples’ directory)
file_size is set to 1024; ram_size is set to 512; test_dir
is set to ‘/tmp’; concurrency is set to 1.
SLA is not available in this test case.

applicability Test can be configured with different:
• file_size - size fo the test file in MB. File size

should be double RAM for good results;
• ram_size - specify RAM size in MB to use, this is

used to reduce testing time;
• test_dir - this directory is where bonnie++ will

create the benchmark operations;
• test_user - the user who should perform the test.

This is not required if you are not running as root;
• concurrency - number of thread to perform test;

usability This test case is used for executing Bonnie++ bench-
mark in VMs.

references bonnie++_
ETSI-NFV-TST001

pre-test conditions The Bonnie++ distribution includes a ‘bon_csv2html’
Perl script, which takes the comma-separated values re-
ported by Bonnie++ and generates an HTML page dis-
playing them. To use this feature, bonnie++ is required
to be install with yardstick (e.g. in yardstick docker).

test sequence description and expected result
step 1 A host VM with fio installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.
step 3 Bonnie++ benchmark is invoked. Simulated IO opera-

tions are started. Logs are produced and stored.
Result: Logs are stored.

step 4 An HTML report is generated using bonnie++ bench-
mark results and stored under /tmp/bonnie.html.

step 5 The host VM is deleted.
test verdict None. Bonnie++ html report is generated.

146 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 147

Yardstick, Release Latest

Yardstick Test Case Description TC080

Network Latency
test case id OPNFV_YARDSTICK_TC080_NETWORK_LATENCY_BETWEEN_CONTAINER
metric RTT (Round Trip Time)
test purpose The purpose of TC080 is to do a basic verification that

network latency is within acceptable boundaries when
packets travel between containers located in two differ-
ent Kubernetes pods.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool ping
Ping is a computer network administration software util-
ity used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time
for packet sent from the originating host to a destination
computer that are echoed back to the source.
Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the Yard-
stick Docker image.

test topology Ping packets (ICMP protocol’s mandatory
ECHO_REQUEST datagram) are sent from
host container to target container to elicit ICMP
ECHO_RESPONSE.

configuration file: opnfv_yardstick_tc080.yaml
Packet size 200 bytes. Test duration 60 seconds. SLA
RTT is set to maximum 10 ms.

applicability This test case can be configured with different:
• packet sizes;
• burst sizes;
• ping intervals;
• test durations;
• test iterations.

Default values exist.
SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also
normal to achieve in balanced L2 environments. How-
ever, to cover most configurations, both bare metal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing. Many real
time applications start to suffer badly if the RTT time is
higher than this. Some may suffer bad also close to this
RTT, while others may not suffer at all. It is a compro-
mise that may have to be tuned for different configura-
tion purposes.

usability This test case should be run in Kunernetes environment.
references Ping

ETSI-NFV-TST001
pre-test conditions The test case Docker image (openretriever/yardstick)

needs to be pulled into Kubernetes environment.
No further requirements have been identified.

test sequence description and expected result
step 1 Two containers are booted, as server and client.
step 2 Yardstick is connected with the server container by us-

ing ssh. ‘ping_benchmark’ bash script is copied from
Jump Host to the server container via the ssh tunnel.

step 3 Ping is invoked. Ping packets are sent from server con-
tainer to client container. RTT results are calculated and
checked against the SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 Two containers are deleted.
test verdict Test should not PASS if any RTT is above the optional

SLA value, or if there is a test case execution problem.

148 Chapter 2. Yardstick User Guide

https://linux.die.net/man/8/ping

Yardstick, Release Latest

2.16. Yardstick Test Cases 149

Yardstick, Release Latest

Yardstick Test Case Description TC081

Network Latency
test case id OPNFV_YARDSTICK_TC081_NETWORK_LATENCY_BETWEEN_CONTAINER_AND

_VM
metric RTT (Round Trip Time)
test purpose The purpose of TC081 is to do a basic verification that

network latency is within acceptable boundaries when
packets travel between a containers and a VM.
The purpose is also to be able to spot the trends. Test re-
sults, graphs and similar shall be stored for comparison
reasons and product evolution understanding between
different OPNFV versions and/or configurations.

test tool ping
Ping is a computer network administration software util-
ity used to test the reachability of a host on an Internet
Protocol (IP) network. It measures the round-trip time
for packet sent from the originating host to a destination
computer that are echoed back to the source.
Ping is normally part of any Linux distribution, hence it
doesn’t need to be installed. It is also part of the Yard-
stick Docker image. (For example also a Cirros image
can be downloaded from cirros-image, it includes ping)

test topology Ping packets (ICMP protocol’s mandatory
ECHO_REQUEST datagram) are sent from host con-
tainer to target vm to elicit ICMP ECHO_RESPONSE.

configuration file: opnfv_yardstick_tc081.yaml
Packet size 200 bytes. Test duration 60 seconds. SLA
RTT is set to maximum 10 ms.

applicability This test case can be configured with different:
• packet sizes;
• burst sizes;
• ping intervals;
• test durations;
• test iterations.

Default values exist.
SLA is optional. The SLA in this test case serves as an
example. Considerably lower RTT is expected, and also
normal to achieve in balanced L2 environments. How-
ever, to cover most configurations, both bare metal and
fully virtualized ones, this value should be possible to
achieve and acceptable for black box testing. Many real
time applications start to suffer badly if the RTT time is
higher than this. Some may suffer bad also close to this
RTT, while others may not suffer at all. It is a compro-
mise that may have to be tuned for different configura-
tion purposes.

usability This test case should be run in Kunernetes environment.
references Ping

ETSI-NFV-TST001
pre-test conditions The test case Docker image (openretriever/yardstick)

needs to be pulled into Kubernetes environment. The
VM image (cirros-image) needs to be installed into
Glance with ping included in it.
No further requirements have been identified.

test sequence description and expected result
step 1 A containers is booted, as server and a VM is booted as

client.
step 2 Yardstick is connected with the server container by us-

ing ssh. ‘ping_benchmark’ bash script is copied from
Jump Host to the server container via the ssh tunnel.

step 3 Ping is invoked. Ping packets are sent from server
container to client VM. RTT results are calculated and
checked against the SLA. Logs are produced and stored.
Result: Logs are stored.

step 4 The container and VM are deleted.
test verdict Test should not PASS if any RTT is above the optional

SLA value, or if there is a test case execution problem.

150 Chapter 2. Yardstick User Guide

https://download.cirros-cloud.net
https://linux.die.net/man/8/ping

Yardstick, Release Latest

Yardstick Test Case Description TC083

Throughput per VM test
test
case
id

OPNFV_YARDSTICK_TC083_Network latency and throughput between VMs

met-
ric

Network latency and throughput

test
pur-
pose

To evaluate the IaaS network performance with regards to flows and throughput, such as if and how different
amounts of packet sizes and flows matter for the throughput between 2 VMs in one pod.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc083.yaml
Packet size: default 1024 bytes.
Test length: default 20 seconds.
The client and server are distributed on different nodes.
For SLA max_mean_latency is set to 100.

test
tool

netperf Netperf is a software application that provides network bandwidth testing between two hosts on
a network. It supports Unix domain sockets, TCP, SCTP, DLPI and UDP via BSD Sockets. Netperf
provides a number of predefined tests e.g. to measure bulk (unidirectional) data transfer or request response
performance. (netperf is not always part of a Linux distribution, hence it needs to be installed.)

ref-
er-
ences

netperf Man pages ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test can be configured with different packet sizes and test duration. Default values exist.
SLA (optional): max_mean_latency

pre-
test
con-
di-
tions

The POD can be reached by external ip and logged on via ssh

test
se-
quence

description and expected result

step
1

Install netperf tool on each specified node, one is as the server, and the other as the client.

step
2

Log on to the client node and use the netperf command to execute the network performance test

step
3

The throughput results stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 151

http://www.netperf.org/netperf/training/Netperf.html

Yardstick, Release Latest

Yardstick Test Case Description TC084

Compute Performance
test case id OPNFV_YARDSTICK_TC084_SPEC CPU 2006 FOR

VM
metric compute-intensive performance
test purpose The purpose of TC084 is to evaluate the IaaS compute

performance by using SPEC CPU 2006 benchmark.
The SPEC CPU 2006 benchmark has several different
ways to measure computer performance. One way is to
measure how fast the computer completes a single task;
this is called a speed measurement. Another way is to
measure how many tasks computer can accomplish in a
certain amount of time; this is called a throughput, ca-
pacity or rate measurement.

test tool SPEC CPU 2006
The SPEC CPU 2006 benchmark is SPEC’s industry-
standardized, CPU-intensive benchmark suite, stressing
a system’s processor, memory subsystem and compiler.
This benchmark suite includes the SPECint benchmarks
and the SPECfp benchmarks. The SPECint 2006 bench-
mark contains 12 different benchmark tests and the
SPECfp 2006 benchmark contains 19 different bench-
mark tests.
SPEC CPU 2006 is not always part of a Linux
distribution. SPEC requires that users purchase a
license and agree with their terms and conditions.
For this test case, users must manually download
cpu2006-1.2.iso from the SPEC website and save
it under the yardstick/resources folder (e.g. /home/
opnfv/repos/yardstick/yardstick/resources/cpu2006-
1.2.iso) SPEC CPU® 2006 benchmark is avail-
able for purchase via the SPEC order form
(https://www.spec.org/order.html).

test description This test case uses SPEC CPU 2006 benchmark to mea-
sure compute-intensive performance of VMs.

configuration file: opnfv_yardstick_tc084.yaml
benchmark_subset is set to int.
SLA is not available in this test case.

applicability Test can be configured with different:
• benchmark_subset - a subset of SPEC CPU 2006

benchmarks to run;
• SPECint_benchmark - a SPECint benchmark to

run;
• SPECint_benchmark - a SPECfp benchmark to

run;
• output_format - desired report format;
• runspec_config - SPEC CPU 2006 config file pro-

vided to the runspec binary;
• runspec_iterations - the number of benchmark it-

erations to execute. For a reportable run, must be
3;

• runspec_tune - tuning to use (base, peak, or all).
For a reportable run, must be either base or all.
Reportable runs do base first, then (optionally)
peak;

• runspec_size - size of input data to run (test, train,
or ref). Reportable runs ensure that your binaries
can produce correct results with the test and train
workloads

usability This test case is used for executing SPEC CPU 2006
benchmark on virtual machines. The SPECint 2006
benchmark takes approximately 5 hours. (The time may
vary due to different VM cpu configurations)

references spec_cpu_2006
ETSI-NFV-TST001

pre-test conditions To run and install SPEC CPU 2006, the following are
required:

• For SPECint 2006: Both C99 and C++98 compil-
ers are installed in VM images;

• For SPECfp 2006: All three of C99, C++98 and
Fortran-95 compilers installed in VM images;

• At least 4GB of disk space availabile on VM.
gcc 4.8.* and g++ 4.8.* version have been tested in
Ubuntu 14.04, Ubuntu 16.04 and Redhat Enterprise
Linux 7.4 image. Higher gcc and g++ version may
cause compiling error.
For more SPEC CPU 2006 dependencies please visit
(https://www.spec.org/cpu2006/Docs/techsupport.html)

test sequence description and expected result
step 1 cpu2006-1.2.iso has been saved un-

der the yardstick/resources folder (e.g.
/home/opnfv/repos/yardstick/yardstick/resources
/cpu2006-1.2.iso). Additionally, to use your custom
runspec config file you can save it under the yard-
stick/resources/ files folder and specify the config file
name in the runspec_config parameter.

step 2 Upload SPEC CPU 2006 ISO to the target VM using
scp and install SPEC CPU 2006.

step 3 Connect to the target server using SSH. If custom run-
spec config file is used, copy this file from yardstick to
the target VM via the SSH tunnel.

step 4 SPEC CPU 2006 benchmark is invoked and SPEC CPU
2006 metrics are generated.

step 5 Text, HTML, CSV, PDF, and Configuration file outputs
for the SPEC CPU 2006 metrics are fetched from the
VM and stored under /tmp/result folder.

test verdict None. SPEC CPU 2006 results are collected and stored.

152 Chapter 2. Yardstick User Guide

https://www.spec.org/order.html
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/Docs/techsupport.html

Yardstick, Release Latest

2.16.3 OPNFV Feature Test Cases

H A

2.16. Yardstick Test Cases 153

Yardstick, Release Latest

Yardstick Test Case Description TC019

Control Node Openstack Service High Availability
test case id OPNFV_YARDSTICK_TC019_HA: Control node

Openstack service down
test purpose This test case will verify the high availability of the

service provided by OpenStack (like nova-api, neutro-
server) on control node.

test method This test case kills the processes of a specific Openstack
service on a selected control node, then checks whether
the request of the related Openstack command is OK
and the killed processes are recovered.

attackers In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name
of the specified OpenStack service. If there are multiple
processes use the same name on the host, all of them are
killed by this attacker. 3) host: which is the name of a
control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “nova-
api” -host: node1

monitors In this test case, two kinds of monitor are needed:
1. the “openstack-cmd” monitor constantly request

a specific Openstack command, which needs two
parameters:

1. monitor_type: which is used for finding the
monitor class and related scritps. It should
be always set to “openstack-cmd” for this
monitor.

2. command_name: which is the command
name used for request

2. the “process” monitor check whether a process is
running on a specific node, which needs three pa-
rameters:

1. monitor_type: which used for finding the
monitor class and related scritps. It should
be always set to “process” for this monitor.

2. process_name: which is the process name
for monitor

3. host: which is the name of the node runing
the process

e.g. monitor1: -monitor_type: “openstack-cmd” -
command_name: “openstack server list” monitor2: -
monitor_type: “process” -process_name: “nova-api” -
host: node1

metrics In this test case, there are two metrics: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request. 2)process_recover_time: which indicates the
maximun time (seconds) from the process being killed
to recovered

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc019.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with indepen-

dently process
Result: The monitor info will be collected.

step 2 do attacker: connect the host through SSH, and then ex-
ecute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step 3 stop monitors after a period of time specified by “wait-
ing_time”
Result: The monitor info will be aggregated.

step 4 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It will check
the status of the specified process on the host, and restart
the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command
to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of
‘lsb_release’ on the host may cause failure to restart the
process.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

154 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 155

Yardstick, Release Latest

Yardstick Test Case Description TC025

OpenStack Controller Node abnormally shutdown High Availability
test case id OPNFV_YARDSTICK_TC025_HA: OpenStack Con-

troller Node abnormally shutdown
test purpose This test case will verify the high availability of con-

troller node. When one of the controller node abnor-
mally shutdown, the service provided by it should be
OK.

test method This test case shutdowns a specified controller node
with some fault injection tools, then checks whether all
services provided by the controller node are OK with
some monitor tools.

attackers In this test case, an attacker called “host-shutdown”
is needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “host-shutdown” in
this test case. 2) host: the name of a controller node
being attacked.
e.g. -fault_type: “host-shutdown” -host: node1

monitors In this test case, one kind of monitor are needed:
1. the “openstack-cmd” monitor constantly request

a specific Openstack command, which needs two
parameters

1) monitor_type: which is used for finding the
monitor class and related scripts. It should
be always set to “openstack-cmd” for this
monitor.

2) command_name: which is the command
name used for request

There are four instance of the “openstack-cmd” mon-
itor: monitor1: -monitor_type: “openstack-cmd” -
api_name: “nova image-list” monitor2: -monitor_type:
“openstack-cmd” -api_name: “neutron router-list”
monitor3: -monitor_type: “openstack-cmd” -api_name:
“heat stack-list” monitor4: -monitor_type: “openstack-
cmd” -api_name: “cinder list”

metrics In this test case, there is one metric: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc019.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with indepen-

dently process
Result: The monitor info will be collected.

step 2 do attacker: connect the host through SSH, and then ex-
ecute shutdown script on the host
Result: The host will be shutdown.

step 3 stop monitors after a period of time specified by “wait-
ing_time”
Result: All monitor result will be aggregated.

step 4 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It restarts the
specified controller node if it is not restarted.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

156 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 157

Yardstick, Release Latest

Yardstick Test Case Description TC045

Control Node Openstack Service High Availability - Neutron Server
test
case
id

OPNFV_YARDSTICK_TC045: Control node Openstack service down - neutron server

test
pur-
pose

This test case will verify the high availability of the network service provided by OpenStack (neutro-server)
on control node.

test
method

This test case kills the processes of neutron-server service on a selected control node, then checks whether
the request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in
this test case. 2) process_name: which is the process name of the specified OpenStack service. If there
are multiple processes use the same name on the host, all of them are killed by this attacker. In this case.
This parameter should always set to “neutron- server”. 3) host: which is the name of a control node being
attacked.
e.g. -fault_type: “kill-process” -process_name: “neutron-server” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
neutron related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scritps. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “neutron agent-list” monitor2: -
monitor_type: “process” -process_name: “neutron-server” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc045.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

158 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 159

Yardstick, Release Latest

Yardstick Test Case Description TC046

Control Node Openstack Service High Availability - Keystone
test
case
id

OPNFV_YARDSTICK_TC046: Control node Openstack service down - keystone

test
pur-
pose

This test case will verify the high availability of the user service provided by OpenStack (keystone) on
control node.

test
method

This test case kills the processes of keystone service on a selected control node, then checks whether the
request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “keystone” 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “keystone” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
keystone related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scritps. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “keystone user-list” monitor2: -
monitor_type: “process” -process_name: “keystone” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc046.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

160 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 161

Yardstick, Release Latest

Yardstick Test Case Description TC047

Control Node Openstack Service High Availability - Glance Api
test
case
id

OPNFV_YARDSTICK_TC047: Control node Openstack service down - glance api

test
pur-
pose

This test case will verify the high availability of the image service provided by OpenStack (glance-api) on
control node.

test
method

This test case kills the processes of glance-api service on a selected control node, then checks whether the
request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “glance- api”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “glance-api” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
glance related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scritps. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “glance image-list” monitor2: -
monitor_type: “process” -process_name: “glance-api” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc047.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

162 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 163

Yardstick, Release Latest

Yardstick Test Case Description TC048

Control Node Openstack Service High Availability - Cinder Api
test
case
id

OPNFV_YARDSTICK_TC048: Control node Openstack service down - cinder api

test
pur-
pose

This test case will verify the high availability of the volume service provided by OpenStack (cinder-api) on
control node.

test
method

This test case kills the processes of cinder-api service on a selected control node, then checks whether the
request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “cinder- api”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “cinder-api” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
cinder related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scritps. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “cinder list” monitor2: -monitor_type:
“process” -process_name: “cinder-api” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc048.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test case
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

164 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 165

Yardstick, Release Latest

Yardstick Test Case Description TC049

Control Node Openstack Service High Availability - Swift Proxy
test
case
id

OPNFV_YARDSTICK_TC049: Control node Openstack service down - swift proxy

test
pur-
pose

This test case will verify the high availability of the storage service provided by OpenStack (swift-proxy) on
control node.

test
method

This test case kills the processes of swift-proxy service on a selected control node, then checks whether the
request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “swift- proxy”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “swift-proxy” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
swift related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scritps. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “swift stat” monitor2: -monitor_type:
“process” -process_name: “swift-proxy” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc049.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

166 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

2.16. Yardstick Test Cases 167

Yardstick, Release Latest

Yardstick Test Case Description TC050

OpenStack Controller Node Network High Availability
test case id OPNFV_YARDSTICK_TC050: OpenStack Controller

Node Network High Availability
test purpose This test case will verify the high availability of control

node. When one of the controller failed to connect the
network, which breaks down the Openstack services on
this node. These Openstack service should able to be
accessed by other controller nodes, and the services on
failed controller node should be isolated.

test method This test case turns off the network interfaces of a spec-
ified control node, then checks whether all services pro-
vided by the control node are OK with some monitor
tools.

attackers In this test case, an attacker called “close-interface”
is needed. This attacker includes three parameters:
1) fault_type: which is used for finding the attacker’s
scripts. It should be always set to “close-interface” in
this test case. 2) host: which is the name of a control
node being attacked. 3) interface: the network interface
to be turned off.
The interface to be closed by the attacker can be set by
the variable of “{{ interface_name }}”:

attackers:
-

fault_type: "general-attacker"
host: {{ attack_host }}
key: "close-br-public"
attack_key: "close-interface"
action_parameter:

interface: {{ interface_name }}
rollback_parameter:

interface: {{ interface_name }}

monitors In this test case, the monitor named “openstack-cmd”
is needed. The monitor needs needs two parameters:
1) monitor_type: which is used for finding the moni-
tor class and related scritps. It should be always set to
“openstack-cmd” for this monitor. 2) command_name:
which is the command name used for request
There are four instance of the “openstack-cmd” moni-
tor:
monitor1:

- monitor_type: "openstack-cmd"
- command_name: "nova image-list"

monitor2:
- monitor_type: "openstack-cmd"
- command_name: "neutron router-list"

monitor3:
- monitor_type: "openstack-cmd"
- command_name: "heat stack-list"

monitor4:
- monitor_type: "openstack-cmd"
- command_name: "cinder list"

metrics In this test case, there is one metric: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc050.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with indepen-

dently process
Result: The monitor info will be collected.

step 2 do attacker: connect the host through SSH, and then
execute the turnoff network interface script with param
value specified by “{{ interface_name }}”.
Result: The specified network interface will be down.

step 3 stop monitors after a period of time specified by “wait-
ing_time”
Result: The monitor info will be aggregated.

step 4 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It turns up the
network interface of the control node if it is not turned
up.

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

168 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC051

OpenStack Controller Node CPU Overload High Availability
test
case
id

OPNFV_YARDSTICK_TC051: OpenStack Controller Node CPU Overload High Availability

test
pur-
pose

This test case will verify the high availability of control node. When the CPU usage of a specified controller
node is stressed to 100%, which breaks down the Openstack services on this node. These Openstack service
should able to be accessed by other controller nodes, and the services on failed controller node should be
isolated.

test
method

This test case stresses the CPU uasge of a specified control node to 100%, then checks whether all services
provided by the environment are OK with some monitor tools.

at-
tack-
ers

In this test case, an attacker called “stress-cpu” is needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “stress-cpu” in this
test case. 2) host: which is the name of a control node being attacked. e.g. -fault_type: “stress-cpu” -host:
node1

mon-
itors

In this test case, the monitor named “openstack-cmd” is needed. The monitor needs needs two parameters:
1) monitor_type: which is used for finding the monitor class and related scritps. It should be always set to
“openstack-cmd” for this monitor. 2) command_name: which is the command name used for request
There are four instance of the “openstack-cmd” monitor: monitor1: -monitor_type: “openstack-cmd” -
command_name: “nova image-list” monitor2: -monitor_type: “openstack-cmd” -command_name: “neu-
tron router-list” monitor3: -monitor_type: “openstack-cmd” -command_name: “heat stack-list” monitor4:
-monitor_type: “openstack-cmd” -command_name: “cinder list”

met-
rics

In this test case, there is one metric: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request.

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
ura-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc051.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the stress cpu script on the host.
Result: The CPU usage of the host will be stressed to 100%.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It kills the process that stresses the CPU usage.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 169

Yardstick, Release Latest

170 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC052

OpenStack Controller Node Disk I/O Block High Availability
test case id OPNFV_YARDSTICK_TC052: OpenStack Controller

Node Disk I/O Block High Availability
test purpose This test case will verify the high availability of control

node. When the disk I/O of a specified disk is blocked,
which breaks down the Openstack services on this node.
Read and write services should still be accessed by other
controller nodes, and the services on failed controller
node should be isolated.

test method This test case blocks the disk I/O of a specified control
node, then checks whether the services that need to read
or wirte the disk of the control node are OK with some
monitor tools.

attackers In this test case, an attacker called “disk-block” is
needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s
scripts. It should be always set to “disk-block” in this
test case. 2) host: which is the name of a control node
being attacked. e.g. -fault_type: “disk-block” -host:
node1

monitors In this test case, two kinds of monitor are needed: 1.
the “openstack-cmd” monitor constantly request a spe-
cific Openstack command, which needs two parameters:
1) monitor_type: which is used for finding the moni-
tor class and related scripts. It should be always set to
“openstack-cmd” for this monitor. 2) command_name:
which is the command name used for request.
e.g. -monitor_type: “openstack-cmd” -
command_name: “nova flavor-list”
2. the second monitor verifies the read and write
function by a “operation” and a “result checker”. the
“operation” have two parameters: 1) operation_type:
which is used for finding the operation class and re-
lated scripts. 2) action_parameter: parameters for the
operation. the “result checker” have three parameters:
1) checker_type: which is used for finding the reuslt
checker class and realted scripts. 2) expectedValue: the
expected value for the output of the checker script. 3)
condition: whether the expected value is in the output
of checker script or is totally same with the output.
In this case, the “operation” adds a flavor and the “re-
sult checker” checks whether ths flavor is created. Their
parameters show as follows:

operation:
-operation_type: "nova-create-flavor"
-action_parameter:

flavorconfig: "test-001 test-001 100
→˓1 1"
result checker:
-checker_type: "check-flavor"
-expectedValue: "test-001"
-condition: "in"

metrics In this test case, there is one metric: 1)ser-
vice_outage_time: which indicates the maximum out-
age time (seconds) of the specified Openstack command
request.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case

file: opnfv_yardstick_tc052.yaml -Attackers: see above
“attackers” discription -waiting_time: which is the time
(seconds) from the process being killed to stoping mon-
itors the monitors -Monitors: see above “monitors” dis-
cription -SLA: see above “metrics” discription
2)POD file: pod.yaml The POD configuration should
record on pod.yaml first. the “host” item in this test case
will use the node name in the pod.yaml.

test sequence description and expected result
step 1 do attacker: connect the host through SSH, and then ex-

ecute the block disk I/O script on the host.
Result: The disk I/O of the host will be blocked

step 2 start monitors: each monitor will run with indepen-
dently process
Result: The monitor info will be collected.

step 3 do operation: add a flavor
step 4 do result checker: check whether the falvor is created
step 5 stop monitors after a period of time specified by “wait-

ing_time”
Result: The monitor info will be aggregated.

step 6 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It excutes the
release disk I/O script to release the blocked I/O.

test verdict Fails if monnitor SLA is not passed or the result checker
is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 171

Yardstick, Release Latest

172 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC053

OpenStack Controller Load Balance Service High Availability
test
case
id

OPNFV_YARDSTICK_TC053: OpenStack Controller Load Balance Service High Availability

test
pur-
pose

This test case will verify the high availability of the load balance service(current is HAProxy) that supports
OpenStack on controller node. When the load balance service of a specified controller node is killed, whether
other load balancers on other controller nodes will work, and whether the controller node will restart the load
balancer are checked.

test
method

This test case kills the processes of load balance service on a selected control node, then checks whether the
request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “swift- proxy”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “haproxy” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process In this case, the command_name of monitor1 should be services that is
supported by load balancer and the process- name of monitor2 should be “haproxy”, for example:
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “nova image-list” monitor2: -
monitor_type: “process” -process_name: “haproxy” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the max-
imun time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc053.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 173

Yardstick, Release Latest

174 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC054

OpenStack Virtual IP High Availability
test
case
id

OPNFV_YARDSTICK_TC054: OpenStack Virtual IP High Availability

test
pur-
pose

This test case will verify the high availability for virtual ip in the environment. When master node of virtual
ip is abnormally shutdown, connection to virtual ip and the services binded to the virtual IP it should be OK.

test
method

This test case shutdowns the virtual IP master node with some fault injection tools, then checks whether
virtual ips can be pinged and services binded to virtual ip are OK with some monitor tools.

at-
tack-
ers

In this test case, an attacker called “control-shutdown” is needed. This attacker includes two parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “control-shutdown” in
this test case. 2) host: which is the name of a control node being attacked.
In this case the host should be the virtual ip master node, that means the host ip is the virtual ip, for exapmle:
-fault_type: “control-shutdown” -host: node1(the VIP Master node)

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “ip_status” monitor that pings a specific ip to
check the connectivity of this ip, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scripts. It should be always set to “ip_status” for this monitor. 2) ip_address:
The ip to be pinged. In this case, ip_address should be the virtual IP.
2. the “openstack-cmd” monitor constantly request a specific Openstack command, which needs two param-
eters: 1) monitor_type: which is used for finding the monitor class and related scripts. It should be always
set to “openstack-cmd” for this monitor. 2) command_name: which is the command name used for request.
e.g. monitor1: -monitor_type: “ip_status” -host: 192.168.0.2 monitor2: -monitor_type: “openstack-cmd”
-command_name: “nova image-list”

met-
rics

In this test case, there are two metrics: 1) ping_outage_time: which-indicates the maximum outage time to
ping the specified host. 2)service_outage_time: which indicates the maximum outage time (seconds) of the
specified Openstack command request.

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc054.yaml -Attackers: see
above “attackers” discription -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” discription -SLA: see above “metrics”
discription
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the shutdown script on the VIP master node.
Result: VIP master node will be shutdown

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It restarts the original VIP master node if it is not restarted.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 175

Yardstick, Release Latest

176 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC056

OpenStack Controller Messaging Queue Service High Availability
test
case
id

OPNFV_YARDSTICK_TC056:OpenStack Controller Messaging Queue Service High Availability

test
pur-
pose

This test case will verify the high availability of the messaging queue service(RabbitMQ) that supports
OpenStack on controller node. When messaging queue service(which is active) of a specified controller node
is killed, the test case will check whether messaging queue services(which are standby) on other controller
nodes will be switched active, and whether the cluster manager on attacked the controller node will restart
the stopped messaging queue.

test
method

This test case kills the processes of messaging queue service on a selected controller node, then checks
whether the request of the related Openstack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case, this
parameter should always set to “rabbitmq”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “rabbitmq-server” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node runing the process In this case, the command_name of monitor1 should be services that
will use the messaging queue(current nova, neutron, cinder ,heat and ceilometer are using RabbitMQ) , and
the process-name of monitor2 should be “rabbitmq”, for example:
e.g. monitor1-1: -monitor_type: “openstack-cmd” -command_name: “openstack image list” monitor1-2: -
monitor_type: “openstack-cmd” -command_name: “openstack network list” monitor1-3: -monitor_type:
“openstack-cmd” -command_name: “openstack volume list” monitor2: -monitor_type: “process” -
process_name: “rabbitmq” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the maxi-
mum time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc056.yaml -Attackers: see
above “attackers” description -waiting_time: which is the time (seconds) from the process being killed
to stoping monitors the monitors -Monitors: see above “monitors” description -SLA: see above “metrics”
description
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 177

Yardstick, Release Latest

178 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC057

OpenStack Controller Cluster Management Service High Availability
test case id OPNFV_YARDSTICK_TC057_HA: OpenStack Controller Cluster Management

Service High Availability
test purpose This test case will verify the quorum configuration of the cluster manager(pacemaker)

on controller nodes. When a controller node , which holds all active application
resources, failed to communicate with other cluster nodes (via corosync), the test case
will check whether the standby application resources will take place of those active
application resources which should be regarded to be down in the cluster manager.

test method This test case kills the processes of cluster messaging service(corosync) on a selected
controller node(the node holds the active application resources), then checks whether
active application resources are switched to other controller nodes and whether the
Openstack commands are OK.

attackers In this test case, an attacker called “kill-process” is needed. This attacker includes
three parameters: 1) fault_type: which is used for finding the attacker’s scripts. It
should be always set to “kill-process” in this test case. 2) process_name: which is the
process name of the load balance service. If there are multiple processes use the same
name on the host, all of them are killed by this attacker. 3) host: which is the name of
a control node being attacked.
In this case, this process name should set to “corosync” , for example -fault_type:
“kill-process” -process_name: “corosync” -host: node1

monitors In this test case, a kind of monitor is needed:
1. the “openstack-cmd” monitor constantly request a specific Openstack com-

mand, which needs two parameters:
1. monitor_type: which is used for finding the monitor class and related

scripts. It should be always set to “openstack-cmd” for this monitor.
2. command_name: which is the command name used for request

In this case, the command_name of monitor1 should be services that are managed by
the cluster manager. (Since rabbitmq and haproxy are managed by pacemaker, most
Openstack Services can be used to check high availability in this case)
(e.g.) monitor1: -monitor_type: “openstack-cmd” -command_name: “nova image-
list” monitor2: -monitor_type: “openstack-cmd” -command_name: “neutron router-
list” monitor3: -monitor_type: “openstack-cmd” -command_name: “heat stack-list”
monitor4: -monitor_type: “openstack-cmd” -command_name: “cinder list”

checkers In this test case, a checker is needed, the checker will the status of application re-
sources in pacemaker and the checker have three parameters: 1) checker_type: which
is used for finding the result checker class and related scripts. In this case the checker
type will be “pacemaker-check-resource” 2) resource_name: the application resource
name 3) resource_status: the expected status of the resource 4) expectedValue: the
expected value for the output of the checker script, in the case the expected value will
be the identifier in the cluster manager 3) condition: whether the expected value is in
the output of checker script or is totally same with the output. (note: pcs is required
to installed on controller node in order to run this checker)
(e.g.) checker1: -checker_type: “pacemaker-check-resource” -resource_name:
“p_rabbitmq-server” -resource_status: “Stopped” -expectedValue: “node-1” -
condition: “in” checker2: -checker_type: “pacemaker-check-resource” -
resource_name: “p_rabbitmq-server” -resource_status: “Master” -expectedValue:
“node-2” -condition: “in”

metrics In this test case, there are two metrics: 1)service_outage_time: which indicates the
maximum outage time (seconds) of the specified Openstack command request.

test tool None. Self-developed.
references ETSI NFV REL001
configuration This test case needs two configuration files: 1) test case file: op-

nfv_yardstick_tc057.yaml -Attackers: see above “attackers” description -Monitors:
see above “monitors” description -Checkers: see above “checkers” description -Steps:
the test case execution step, see “test sequence” description below
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the
“host” item in this test case will use the node name in the pod.yaml.

test sequence description and expected result
step 1 start monitors: each monitor will run with independently process

Result: The monitor info will be collected.
step 2 do attacker: connect the host through SSH, and then execute the kill process script

with param value specified by “process_name”
Result: Process will be killed.

step 3 do checker: check whether the status of application resources on different nodes are
updated

step 4 stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step 5 verify the SLA
Result: The test case is passed or not.

post-action It is the action when the test cases exist. It will check the status of the cluster messag-
ing process(corosync) on the host, and restart the process if it is not running for next
test cases. Notice: This post-action uses ‘lsb_release’ command to check the host
linux distribution and determine the OpenStack service name to restart the process.
Lack of ‘lsb_release’ on the host may cause failure to restart the process.

test verdict Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 179

Yardstick, Release Latest

180 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC058

OpenStack Controller Virtual Router Service High Availability
test
case
id

OPNFV_YARDSTICK_TC058: OpenStack Controller Virtual Router Service High Availability

test
pur-
pose

This test case will verify the high availability of virtual routers(L3 agent) on controller node. When a virtual
router service on a specified controller node is shut down, this test case will check whether the network of
virtual machines will be affected, and whether the attacked virtual router service will be recovered.

test
method

This test case kills the processes of virtual router service (l3-agent) on a selected controller node(the node
holds the active l3-agent), then checks whether the network routing of virtual machines is OK and whether
the killed service will be recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the load balance service. If there are multiple
processes use the same name on the host, all of them are killed by this attacker. 3) host: which is the name
of a control node being attacked.
In this case, this process name should set to “l3agent” , for example -fault_type: “kill-process” -
process_name: “l3agent” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “ip_status” monitor that pings a specific ip to
check the connectivity of this ip, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scripts. It should be always set to “ip_status” for this monitor. 2) ip_address:
The ip to be pinged. In this case, ip_address will be either an ip address of external network or an ip address
of a virtual machine. 3) host: The node on which ping will be executed, in this case the host will be a virtual
machine.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor. In this case, the
process-name of monitor2 should be “l3agent” 3) host: which is the name of the node running the process
e.g. monitor1-1: -monitor_type: “ip_status” -host: 172.16.0.11 -ip_address: 172.16.1.11 monitor1-2: -
monitor_type: “ip_status” -host: 172.16.0.11 -ip_address: 8.8.8.8 monitor2: -monitor_type: “process” -
process_name: “l3agent” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified Openstack command request. 2)process_recover_time: which indicates the maxi-
mum time (seconds) from the process being killed to recovered

test
tool

None. Self-developed.

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc058.yaml -Attackers: see
above “attackers” description -Monitors: see above “monitors” description -Steps: the test case execution
step, see “test sequence” description below
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with cachestat included in the image.

step
1

Two host VMs are booted, these two hosts are in two different networks, the networks are connected by a
virtual router.

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
4

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
5

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases. Virtual machines and network created in the test
case will be destoryed.
Notice: This post-action uses ‘lsb_release’ command to check the host linux distribution and determine the
OpenStack service name to restart the process. Lack of ‘lsb_release’ on the host may cause failure to restart
the process.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 181

Yardstick, Release Latest

182 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC087

SDN Controller resilience in non-HA configuration
test case id OPNFV_YARDSTICK_TC087: SDN controller re-

silience in non-HA configuration
test purpose This test validates that network data plane services are

highly available in the event of an SDN Controller fail-
ure, even if the SDN controller is deployed in a non-HA
configuration. Specifically, the test verifies that existing
data plane connectivity is not impacted, i.e. all config-
ured network services such as DHCP, ARP, L2, L3 Se-
curity Groups should continue to operate between the
existing VMs while the SDN controller is offline or re-
booting.
The test also validates that new network service opera-
tions (creating a new VM in the existing L2/L3 network
or in a new network, etc.) are operational after the SDN
controller has recovered from a failure.

test method This test case fails the SDN controller service running
on the OpenStack controller node, then checks if al-
ready configured DHCP/ARP/L2/L3/SNAT connectiv-
ity is not impacted between VMs and the system is able
to execute new virtual network operations once the SDN
controller is restarted and has fully recovered

attackers In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:

1. fault_type: which is used for finding the at-
tacker’s scripts. It should be set to ‘kill-process’
in this test

2. process_name: should be set to the name of the
SDN controller process

3. host: which is the name of a control node where
the SDN controller process is running

e.g. -fault_type: “kill-process” -process_name:
“opendaylight” -host: node1

monitors This test case utilizes two monitors of type “ip-status”
and one monitor of type “process” to track the following
conditions:

1. “ping_same_network_l2”: monitor ICMP traffic
between VMs in the same Neutron network

2. “ping_external_snat”: monitor ICMP traffic from
VMs to an external host on the Internet to verify
SNAT functionality.

3. “SDN controller process monitor”: a monitor
checking the state of a specified SDN controller
process. It measures the recovery time of the
given process.

Monitors of type “ip-status” use the “ping” utility to ver-
ify reachability of a given target IP.

operations In this test case, the following operations are needed:
1. “nova-create-instance-in_network”: create a VM

instance in one of the existing Neutron network.

metrics In this test case, there are two metrics:
1. process_recover_time: which indicates the max-

imun time (seconds) from the process being killed
to recovered

2. packet_drop: measure the packets that have been
dropped by the monitors using pktgen.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references none
configuration This test case needs two configuration files:

1. test case file: opnfv_yardstick_tc087.yaml
• Attackers: see above “attackers” discription
• waiting_time: which is the time (seconds)

from the process being killed to stoping
monitors the monitors

• Monitors: see above “monitors” discription
• SLA: see above “metrics” discription

2. POD file: pod.yaml The POD configuration
should record on pod.yaml first. the “host” item
in this test case will use the node name in the
pod.yaml.

test sequence Description and expected result
pre-action

1. The OpenStack cluster is set up with a single SDN
controller in a non-HA configuration.

2. One or more Neutron networks are created with
two or more VMs attached to each of the Neutron
networks.

3. The Neutron networks are attached to a Neutron
router which is attached to an external network
towards the DCGW.

step 1
Start IP connectivity monitors:

1. Check the L2 connectivity between the VMs
in the same Neutron network.

2. Check connectivity from one VM to an ex-
ternal host on the Internet to verify SNAT
functionality.

Result: The monitor info will be collected.
step 2 Start attacker: SSH connect to the VIM node and kill

the SDN controller process
Result: the SDN controller service will be shutdown

step 3 Verify the results of the IP connectivity monitors.
Result: The outage_time metric reported by the moni-
tors is zero.

step 4 Restart the SDN controller.
step 5 Create a new VM in the existing Neutron network
step 6

Verify connectivity between VMs as follows:
1. Check the L2 connectivity between the pre-

viously existing VM and the newly created
VM on the same Neutron network by send-
ing ICMP messages

step 7 Stop IP connectivity monitors after a period of time
specified by “waiting_time”
Result: The monitor info will be aggregated

step 8 Verify the IP connectivity monitor results
Result: IP connectivity monitor should not have any
packet drop failures reported

test verdict This test fails if the SLAs are not met or if there is a test
case execution problem. The SLAs are define as follows
for this test:

• SDN Controller recovery
– process_recover_time <= 30 sec

• no impact on data plane connectivity during SDN
controller failure and recovery.

– packet_drop == 0

2.16. Yardstick Test Cases 183

Yardstick, Release Latest

184 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC088

Control Node Openstack Service High Availability - Nova Scheduler
test
case
id

OPNFV_YARDSTICK_TC088: Control node Openstack service down - nova scheduler

test
pur-
pose

This test case will verify the high availability of the compute scheduler service provided by OpenStack
(nova- scheduler) on control node.

test
method

This test case kills the processes of nova-scheduler service on a selected control node, then checks whether
the request of the related OpenStack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “nova- scheduler”. 3) host: which is the name of a control node being
attacked.
e.g. -fault_type: “kill-process” -process_name: “nova-scheduler” -host: node1

moni-
tors

In this test case, one kind of monitor is needed: 1. the “process” monitor check whether a process is
running on a specific node, which needs three parameters: 1) monitor_type: which used for finding the
monitor class and related scripts. It should be always set to “process” for this monitor. 2) process_name:
which is the process name for monitor 3) host: which is the name of the node running the process
e.g. monitor: -monitor_type: “process” -process_name: “nova-scheduler” -host: node1

oper-
ations

In this test case, the following operations are needed: 1. “nova-create-instance”: create a VM instance to
check whether the nova-scheduler works normally.

met-
rics

In this test case, there are one metric: 1)process_recover_time: which indicates the maximum time (sec-
onds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

refer-
ences

ETSI NFV REL001

con-
figu-
ration

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc088.yaml -Attackers: see
above “attackers” description -waiting_time: which is the time (seconds) from the process being killed to
stopping monitors the monitors -Monitors: see above “monitors” description -SLA: see above “metrics”
description
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step 1 do attacker: connect the host through SSH, and then execute the kill process script with param value
specified by “process_name”
Result: Process will be killed.

step 2 start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step 3 create a new instance to check whether the nova scheduler works normally.
step 4 stop the monitor after a period of time specified by “waiting_time”

Result: The monitor info will be aggregated.
post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 185

Yardstick, Release Latest

186 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC089

Control Node Openstack Service High Availability - Nova Conductor
test
case
id

OPNFV_YARDSTICK_TC089: Control node Openstack service down - nova conductor

test
pur-
pose

This test case will verify the high availability of the compute database proxy service provided by Open-
Stack (nova- conductor) on control node.

test
method

This test case kills the processes of nova-conductor service on a selected control node, then checks whether
the request of the related OpenStack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “nova- conductor”. 3) host: which is the name of a control node being
attacked.
e.g. -fault_type: “kill-process” -process_name: “nova-conductor” -host: node1

moni-
tors

In this test case, one kind of monitor is needed: 1. the “process” monitor check whether a process is
running on a specific node, which needs three parameters: 1) monitor_type: which used for finding the
monitor class and related scripts. It should be always set to “process” for this monitor. 2) process_name:
which is the process name for monitor 3) host: which is the name of the node running the process
e.g. monitor: -monitor_type: “process” -process_name: “nova-conductor” -host: node1

oper-
ations

In this test case, the following operations are needed: 1. “nova-create-instance”: create a VM instance to
check whether the nova-conductor works normally.

met-
rics

In this test case, there are one metric: 1)process_recover_time: which indicates the maximum time (sec-
onds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

refer-
ences

ETSI NFV REL001

con-
figu-
ration

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc089.yaml -Attackers: see
above “attackers” description -waiting_time: which is the time (seconds) from the process being killed to
stopping monitors the monitors -Monitors: see above “monitors” description -SLA: see above “metrics”
description
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step 1 do attacker: connect the host through SSH, and then execute the kill process script with param value
specified by “process_name”
Result: Process will be killed.

step 2 start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step 3 create a new instance to check whether the nova conductor works normally.
step 4 stop the monitor after a period of time specified by “waiting_time”

Result: The monitor info will be aggregated.
post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 187

Yardstick, Release Latest

188 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC090

Control Node OpenStack Service High Availability - Database Instances
test
case
id

OPNFV_YARDSTICK_TC090: Control node OpenStack service down - database instances

test
pur-
pose

This test case will verify the high availability of the data base instances used by OpenStack (mysql) on
control node.

test
method

This test case kills the processes of database service on a selected control node, then checks whether the
request of the related OpenStack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to the name of the database service of OpenStack. 3) host: which is the name
of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “mysql” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific Openstack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scritps. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
neutron related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node running the process
The examples of monitors show as follows, there are four instance of the “openstack-cmd” monitor, in order
to check the database connection of different OpenStack components.
monitor1: -monitor_type: “openstack-cmd” -api_name: “openstack image list” monitor2: -monitor_type:
“openstack-cmd” -api_name: “openstack router list” monitor3: -monitor_type: “openstack-cmd” -
api_name: “openstack stack list” monitor4: -monitor_type: “openstack-cmd” -api_name: “openstack vol-
ume list” monitor5: -monitor_type: “process” -process_name: “mysql” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified OpenStack command request. 2)process_recover_time: which indicates the max-
imum time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc090.yaml -Attackers: see
above “attackers” description -waiting_time: which is the time (seconds) from the process being killed to
stopping monitors the monitors -Monitors: see above “monitors” description -SLA: see above “metrics”
description
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

2.16. Yardstick Test Cases 189

Yardstick, Release Latest

190 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC091

Control Node Openstack Service High Availability - Heat Api
test
case
id

OPNFV_YARDSTICK_TC091: Control node OpenStack service down - heat api

test
pur-
pose

This test case will verify the high availability of the orchestration service provided by OpenStack (heat-api)
on control node.

test
method

This test case kills the processes of heat-api service on a selected control node, then checks whether the
request of the related OpenStack command is OK and the killed processes are recovered.

at-
tack-
ers

In this test case, an attacker called “kill-process” is needed. This attacker includes three parameters: 1)
fault_type: which is used for finding the attacker’s scripts. It should be always set to “kill-process” in this
test case. 2) process_name: which is the process name of the specified OpenStack service. If there are
multiple processes use the same name on the host, all of them are killed by this attacker. In this case. This
parameter should always set to “heat-api”. 3) host: which is the name of a control node being attacked.
e.g. -fault_type: “kill-process” -process_name: “heat-api” -host: node1

mon-
i-
tors

In this test case, two kinds of monitor are needed: 1. the “openstack-cmd” monitor constantly request a
specific OpenStack command, which needs two parameters: 1) monitor_type: which is used for finding
the monitor class and related scripts. It should be always set to “openstack-cmd” for this monitor. 2)
command_name: which is the command name used for request. In this case, the command name should be
neutron related commands.
2. the “process” monitor check whether a process is running on a specific node, which needs three parame-
ters: 1) monitor_type: which used for finding the monitor class and related scripts. It should be always set
to “process” for this monitor. 2) process_name: which is the process name for monitor 3) host: which is the
name of the node running the process
e.g. monitor1: -monitor_type: “openstack-cmd” -command_name: “heat stack list” monitor2: -
monitor_type: “process” -process_name: “heat-api” -host: node1

met-
rics

In this test case, there are two metrics: 1)service_outage_time: which indicates the maximum outage time
(seconds) of the specified OpenStack command request. 2)process_recover_time: which indicates the max-
imum time (seconds) from the process being killed to recovered

test
tool

Developed by the project. Please see folder: “yardstick/benchmark/scenarios/availability/ha_tools”

ref-
er-
ences

ETSI NFV REL001

con-
fig-
u-
ra-
tion

This test case needs two configuration files: 1) test case file: opnfv_yardstick_tc091.yaml -Attackers: see
above “attackers” description -waiting_time: which is the time (seconds) from the process being killed to
the monitor stopped -Monitors: see above “monitors” description -SLA: see above “metrics” description
2)POD file: pod.yaml The POD configuration should record on pod.yaml first. the “host” item in this test
case will use the node name in the pod.yaml.

test
se-
quence

description and expected result

step
1

start monitors: each monitor will run with independently process
Result: The monitor info will be collected.

step
2

do attacker: connect the host through SSH, and then execute the kill process script with param value specified
by “process_name”
Result: Process will be killed.

step
3

stop monitors after a period of time specified by “waiting_time”
Result: The monitor info will be aggregated.

step
4

verify the SLA
Result: The test case is passed or not.

post-
action

It is the action when the test cases exist. It will check the status of the specified process on the host, and
restart the process if it is not running for next test cases

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.
2.16. Yardstick Test Cases 191

Yardstick, Release Latest

192 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC092

SDN Controller resilience in HA configuration
test case id OPNFV_YARDSTICK_TC092: SDN controller re-

silience and high availability HA configuration
test purpose This test validates SDN controller node high availability

by verifying there is no impact on the data plane connec-
tivity when one SDN controller fails in a HA configura-
tion, i.e. all existing configured network services DHCP,
ARP, L2, L3VPN, Security Groups should continue to
operate between the existing VMs while one SDN con-
troller instance is offline and rebooting.
The test also validates that network service operations
such as creating a new VM in an existing or new L2
network network remain operational while one instance
of the SDN controller is offline and recovers from the
failure.

test method
This test case:

1. fails one instance of a SDN controller clus-
ter running in a HA configuration on the
OpenStack controller node

2. checks if already configured L2 connectiv-
ity between existing VMs is not impacted

3. verifies that the system never loses the abil-
ity to execute virtual network operations,
even when the failed SDN Controller is still
recovering

attackers In this test case, an attacker called “kill-process” is
needed. This attacker includes three parameters:

1. fault_type: which is used for finding the at-
tacker’s scripts. It should be set to ‘kill-process’
in this test

2. process_name: should be set to sdn controller
process

3. host: which is the name of a control node where
opendaylight process is running

example:
• fault_type: “kill-process”
• process_name: “opendaylight-karaf”

(TBD)
• host: node1

monitors
In this test case, the following monitors are needed

1. ping_same_network_l2: monitor
pinging traffic between the VMs in same
neutron network

2. ping_external_snat: monitor ping
traffic from VMs to external destinations
(e.g. google.com)

3. SDN controller process
monitor: a monitor checking the
state of a specified SDN controller process.
It measures the recovery time of the given
process.

operations
In this test case, the following operations are needed:

1. “nova-create-instance-in_network”: create
a VM instance in one of the existing neutron
network.

metrics
In this test case, there are two metrics:

1. process_recover_time: which indicates the
maximun time (seconds) from the process
being killed to recovered

2. packet_drop: measure the packets that have
been dropped by the monitors using pktgen.

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references TBD
configuration This test case needs two configuration files: 1. test case

file: opnfv_yardstick_tc092.yaml
• Attackers: see above “attackers” discription
• Monitors: see above “monitors” discription

– waiting_time: which is the time (seconds)
from the process being killed to stoping
monitors the monitors

• SLA: see above “metrics” discription
2. POD file: pod.yaml The POD configuration

should record on pod.yaml first. the “host” item
in this test case will use the node name in the
pod.yaml.

test sequence Description and expected result
pre-action

1. The OpenStack cluster is set up with an SDN con-
troller running in a three node cluster configura-
tion.

2. One or more neutron networks are created with
two or more VMs attached to each of the neutron
networks.

3. The neutron networks are attached to a neutron
router which is attached to an external network
the towards DCGW.

4. The master node of SDN controller cluster is
known.

step 1
Start ip connectivity monitors:

1. Check the L2 connectivity between the VMs
in the same neutron network.

2. Check the external connectivity of the VMs.
Each monitor runs in an independent process.
Result: The monitor info will be collected.

step 2 Start attacker: SSH to the VIM node and kill the SDN
controller process determined in step 2.
Result: One SDN controller service will be shut down

step 3 Restart the SDN controller.
step 4 Create a new VM in the existing Neutron network while

the SDN controller is offline or still recovering.
step 5 Stop IP connectivity monitors after a period of time

specified by “waiting_time”
Result: The monitor info will be aggregated

step 6 Verify the IP connectivity monitor result
Result: IP connectivity monitor should not have any
packet drop failures reported

step 7 Verify process_recover_time, which indicates the max-
imun time (seconds) from the process being killed to re-
covered, is within the SLA. This step blocks until either
the process has recovered or a timeout occurred.
Result: process_recover_time is within SLA limits, if
not, test case failed and stopped.

step 8 Start IP connectivity monitors for the new VM:
1. Check the L2 connectivity from the existing VMs

to the new VM in the Neutron network.
2. Check connectivity from one VM to an external

host on the Internet to verify SNAT functionality.
Result: The monitor info will be collected.

step 9 Stop IP connectivity monitors after a period of time
specified by “waiting_time”
Result: The monitor info will be aggregated

step 10 Verify the IP connectivity monitor result
Result: IP connectivity monitor should not have any
packet drop failures reported

test verdict Fails only if SLA is not passed, or if there is a test case
execution problem.

2.16. Yardstick Test Cases 193

Yardstick, Release Latest

194 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description TC093

SDN Vswitch resilience in non-HA or HA configuration
test case id OPNFV_YARDSTICK_TC093: SDN Vswitch re-

silience in non-HA or HA configuration
test purpose This test validates that network data plane services are

resilient in the event of Virtual Switch failure in com-
pute nodes. Specifically, the test verifies that existing
data plane connectivity is not permanently impacted i.e.
all configured network services such as DHCP, ARP, L2,
L3 Security Groups continue to operate between the ex-
isting VMs eventually after the Virtual Switches have
finished rebooting.
The test also validates that new network service opera-
tions (creating a new VM in the existing L2/L3 network
or in a new network, etc.) are operational after the Vir-
tual Switches have recovered from a failure.

test method This testcase first checks if the already configured
DHCP/ARP/L2/L3/SNAT connectivity is proper. After
it fails and restarts again the VSwitch services which are
running on both OpenStack compute nodes, and then
checks if already configured DHCP/ARP/L2/L3/SNAT
connectivity is not permanently impacted (even if there
are some packet loss events) between VMs and the sys-
tem is able to execute new virtual network operations
once the Vswitch services are restarted and have been
fully recovered

attackers In this test case, two attackers called “kill-process” are
needed. These attackers include three parameters:

1. fault_type: which is used for finding the at-
tacker’s scripts. It should be set to ‘kill-process’
in this test

2. process_name: should be set to the name of the
Vswitch process

3. host: which is the name of the compute node
where the Vswitch process is running

e.g. -fault_type: “kill-process” -process_name:
“openvswitch” -host: node1

monitors This test case utilizes two monitors of type “ip-status”
and one monitor of type “process” to track the following
conditions:

1. “ping_same_network_l2”: monitor ICMP traffic
between VMs in the same Neutron network

2. “ping_external_snat”: monitor ICMP traffic from
VMs to an external host on the Internet to verify
SNAT functionality.

3. “Vswitch process monitor”: a monitor checking
the state of the specified Vswitch process. It mea-
sures the recovery time of the given process.

Monitors of type “ip-status” use the “ping” utility to ver-
ify reachability of a given target IP.

operations
In this test case, the following operations are needed:

1. “nova-create-instance-in_network”: create
a VM instance in one of the existing Neu-
tron network.

metrics
In this test case, there are two metrics:

1. process_recover_time: which indicates the
maximun time (seconds) from the process
being killed to recovered

2. outage_time: measures the total time in
which monitors were failing in their tasks
(e.g. total time of Ping failure)

test tool Developed by the project. Please see folder: “yard-
stick/benchmark/scenarios/availability/ha_tools”

references none
configuration

This test case needs two configuration files:
1. test case file: opnfv_yardstick_tc093.yaml

• Attackers: see above “attackers” de-
scription

• monitor_time: which is the time (sec-
onds) from starting to stoping the mon-
itors

• Monitors: see above “monitors” dis-
cription

• SLA: see above “metrics” description
2. POD file: pod.yaml The POD configuration

should record on pod.yaml first. the “host”
item in this test case will use the node name
in the pod.yaml.

test sequence Description and expected result
pre-action

1. The Vswitches are set up in both compute nodes.
2. One or more Neutron networks are created with

two or more VMs attached to each of the Neutron
networks.

3. The Neutron networks are attached to a Neutron
router which is attached to an external network
towards the DCGW.

step 1
Start IP connectivity monitors:

1. Check the L2 connectivity between the VMs
in the same Neutron network.

2. Check connectivity from one VM to an ex-
ternal host on the Internet to verify SNAT
functionality.

Result: The monitor info will be collected.
step 2 Start attackers: SSH connect to the VIM compute nodes

and kill the Vswitch processes
Result: the SDN Vswitch services will be shutdown

step 3 Verify the results of the IP connectivity monitors.
Result: The outage_time metric reported by the moni-
tors is not greater than the max_outage_time.

step 4 Restart the SDN Vswitch services.
step 5 Create a new VM in the existing Neutron network
step 6

Verify connectivity between VMs as follows:
1. Check the L2 connectivity between the pre-

viously existing VM and the newly created
VM on the same Neutron network by send-
ing ICMP messages

step 7 Stop IP connectivity monitors after a period of time
specified by “monitor_time”
Result: The monitor info will be aggregated

step 8 Verify the IP connectivity monitor results
Result: IP connectivity monitor should not have any
packet drop failures reported

test verdict This test fails if the SLAs are not met or if there is a test
case execution problem. The SLAs are define as follows
for this test: * SDN Vswitch recovery

• process_recover_time <= 30 sec
• no impact on data plane connectivity during SDN

Vswitch failure and recovery.
– packet_drop == 0

2.16. Yardstick Test Cases 195

Yardstick, Release Latest

IPv6

Yardstick Test Case Description TC027

IPv6 connectivity between nodes on the tenant network
test
case
id

OPNFV_YARDSTICK_TC027_IPv6 connectivity

met-
ric

RTT, Round Trip Time

test
pur-
pose

To do a basic verification that IPv6 connectivity is within acceptable boundaries when ipv6 packets travel
between hosts located on same or different compute blades. The purpose is also to be able to spot trends.
Test results, graphs and similar shall be stored for comparison reasons and product evolution understanding
between different OPNFV versions and/or configurations.

con-
fig-
ura-
tion

file: opnfv_yardstick_tc027.yaml
Packet size 56 bytes. SLA RTT is set to maximum 30 ms. ipv6 test case can be configured as three
independent modules (setup, run, teardown). if you only want to setup ipv6 testing environment, do some
tests as you want, “run_step” of task yaml file should be configured as “setup”. if you want to setup and
run ping6 testing automatically, “run_step” should be configured as “setup, run”. and if you have had a
environment which has been setup, you only wan to verify the connectivity of ipv6 network, “run_step”
should be “run”. Of course, default is that three modules run sequentially.

test
tool

ping6
Ping6 is normally part of Linux distribution, hence it doesn’t need to be installed.

ref-
er-
ences

ipv6
ETSI-NFV-TST001

ap-
pli-
ca-
bil-
ity

Test case can be configured with different run step you can run setup, run benchmark, teardown inde-
pendently SLA is optional. The SLA in this test case serves as an example. Considerably lower RTT is
expected.

pre-
test
con-
di-
tions

The test case image needs to be installed into Glance with ping6 included in it.
For Brahmaputra, a compass_os_nosdn_ha deploy scenario is need. more installer and more sdn deploy
scenario will be supported soon

test
se-
quence

description and expected result

step
1

To setup IPV6 testing environment: 1. disable security group 2. create (ipv6, ipv4) router, network and
subnet 3. create VRouter, VM1, VM2

step
2

To run ping6 to verify IPV6 connectivity : 1. ssh to VM1 2. Ping6 to ipv6 router from VM1 3. Get the
result(RTT) and logs are stored

step
3

To teardown IPV6 testing environment 1. delete VRouter, VM1, VM2 2. delete (ipv6, ipv4) router, network
and subnet 3. enable security group

test
ver-
dict

Test should not PASS if any RTT is above the optional SLA value, or if there is a test case execution
problem.

KVM

196 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/display/ipv6

Yardstick, Release Latest

Yardstick Test Case Description TC028

KVM Latency measurements
test
case
id

OPNFV_YARDSTICK_TC028_KVM Latency measurements

metric min, avg and max latency
test
pur-
pose

To evaluate the IaaS KVM virtualization capability with regards to min, avg and max latency. The purpose
is also to be able to spot trends. Test results, graphs and similar shall be stored for comparison reasons
and product evolution understanding between different OPNFV versions and/or configurations.

con-
figu-
ration

file: samples/cyclictest-node-context.yaml

test
tool

Cyclictest
(Cyclictest is not always part of a Linux distribution, hence it needs to be installed. As an example see
the /yardstick/tools/ directory for how to generate a Linux image with cyclictest included.)

refer-
ences

Cyclictest

appli-
cabil-
ity

This test case is mainly for kvm4nfv project CI verify. Upgrade host linux kernel, boot a gust vm update
it’s linux kernel, and then run the cyclictest to test the new kernel is work well.

pre-
test
condi-
tions

The test kernel rpm, test sequence scripts and test guest image need put the right folders as specified in
the test case yaml file. The test guest image needs with cyclictest included in it.
No POD specific requirements have been identified.

test
se-
quence

description and expected result

step 1 The host and guest os kernel is upgraded. Cyclictest is invoked and logs are produced and stored.
Result: Logs are stored.

test
ver-
dict

Fails only if SLA is not passed, or if there is a test case execution problem.

Parser

2.16. Yardstick Test Cases 197

https://rt.wiki.kernel.org/index.php/Cyclictest

Yardstick, Release Latest

Yardstick Test Case Description TC040

Verify Parser Yang-to-Tosca
test case id OPNFV_YARDSTICK_TC040 Verify Parser Yang-to-

Tosca
metric

1. tosca file which is converted from yang file by
Parser

2. result whether the output is same with expected
outcome

test purpose To verify the function of Yang-to-Tosca in Parser.
configuration file: opnfv_yardstick_tc040.yaml

yangfile: the path of the yangfile which you want to con-
vert toscafile: the path of the toscafile which is your ex-
pected outcome.

test tool Parser
(Parser is not part of a Linux distribution, hence it
needs to be installed. As an example see the /yard-
stick/benchmark/scenarios/parser/parser_setup.sh for
how to install it manual. Of course, it will be installed
and uninstalled automatically when you run this test
case by yardstick)

references Parser
applicability Test can be configured with different path of yangfile

and toscafile to fit your real environment to verify Parser
pre-test conditions No POD specific requirements have been identified. it

can be run without VM
test sequence description and expected result
step 1 parser is installed without VM, running Yang-to-Tosca

module to convert yang file to tosca file, validating out-
put against expected outcome.
Result: Logs are stored.

test verdict Fails only if output is different with expected outcome
or if there is a test case execution problem.

StorPerf

2.16.4 Templates

198 Chapter 2. Yardstick User Guide

https://wiki.opnfv.org/display/parser

Yardstick, Release Latest

Yardstick Test Case Description TCXXX

test case slogan e.g. Network Latency
test case id e.g. OPNFV_YARDSTICK_TC001_NW Latency
metric what will be measured, e.g. latency
test pur-
pose

describe what is the purpose of the test case

configura-
tion

what .yaml file to use, state SLA if applicable, state test duration, list and describe the scenario
options used in this TC and also list the options using default values.

test tool e.g. ping
references e.g. RFCxxx, ETSI-NFVyyy
applicabil-
ity

describe variations of the test case which can be performend, e.g. run the test for different packet
sizes

pre-test
conditions

describe configuration in the tool(s) used to perform the measurements (e.g. fio, pktgen), POD-
specific configuration required to enable running the test

test se-
quence

description and expected result

step 1 use this to describe tests that require sveveral steps e.g collect logs.
Result: what happens in this step e.g. logs collected

step 2 remove interface
Result: interface down.

step N what is done in step N
Result: what happens

test verdict expected behavior, or SLA, pass/fail criteria

Task Template Syntax

Basic template syntax

A nice feature of the input task format used in Yardstick is that it supports the template syntax based on Jinja2. This
turns out to be extremely useful when, say, you have a fixed structure of your task but you want to parameterize this
task in some way. For example, imagine your input task file (task.yaml) runs a set of Ping scenarios:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"

scenarios:
-

type: Ping
options:
packetsize: 200

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10

(continues on next page)

2.16. Yardstick Test Cases 199

Yardstick, Release Latest

(continued from previous page)

action: monitor

context:
...

Let’s say you want to run the same set of scenarios with the same runner/ context/sla, but you want to try another
packetsize to compare the performance. The most elegant solution is then to turn the packetsize name into a template
variable:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"
scenarios:
-

type: Ping
options:
packetsize: {{packetsize}}

host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10
action: monitor

context:
...

and then pass the argument value for {{packetsize}} when starting a task with this configuration file. Yardstick
provides you with different ways to do that:

1.Pass the argument values directly in the command-line interface (with either a JSON or YAML dictionary):

yardstick task start samples/ping-template.yaml
--task-args'{"packetsize":"200"}'

2.Refer to a file that specifies the argument values (JSON/YAML):

yardstick task start samples/ping-template.yaml --task-args-file args.yaml

Using the default values

Note that the Jinja2 template syntax allows you to set the default values for your parameters. With default values set,
your task file will work even if you don’t parameterize it explicitly while starting a task. The default values should be
set using the {% set . . . %} clause (task.yaml). For example:

Sample benchmark task config file
measure network latency using ping
schema: "yardstick:task:0.1"
{% set packetsize = packetsize or "100" %}

(continues on next page)

200 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

(continued from previous page)

scenarios:
-

type: Ping
options:
packetsize: {{packetsize}}
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

...

If you don’t pass the value for {{packetsize}} while starting a task, the default one will be used.

Advanced templates

Yardstick makes it possible to use all the power of Jinja2 template syntax, including the mechanism of built-in func-
tions. As an example, let us make up a task file that will do a block storage performance test. The input task file
(fio-template.yaml) below uses the Jinja2 for-endfor construct to accomplish that:

#Test block sizes of 4KB, 8KB, 64KB, 1MB
#Test 5 workloads: read, write, randwrite, randread, rw
schema: "yardstick:task:0.1"

scenarios:
{% for bs in ['4k', '8k', '64k', '1024k'] %}
{% for rw in ['read', 'write', 'randwrite', 'randread', 'rw'] %}

-
type: Fio
options:
filename: /home/ubuntu/data.raw
bs: {{bs}}
rw: {{rw}}
ramp_time: 10

host: fio.demo
runner:
type: Duration
duration: 60
interval: 60

{% endfor %}
{% endfor %}
context

...

2.17 NSB Sample Test Cases

2.17.1 Abstract

This chapter lists available NSB test cases.

2.17. NSB Sample Test Cases 201

Yardstick, Release Latest

2.17.2 NSB PROX Test Case Descriptions

202 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX ACL

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_acl-{port_num}

• context = baremetal or heat_context;
• port_num = 2 or 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose This test allows to measure how well the SUT can ex-
ploit structures in the list of ACL rules. The ACL rules
are matched against a 7-tuple of the input packet: the
regular 5-tuple and two VLAN tags. The rules in the
rule set allow the packet to be forwarded and the rule
set contains a default “match all” rule.
The KPI is measured with the rule set that has a mod-
erate number of rules with moderate similarity between
the rules & the fraction of rules that were used.
The ACL test cases are implemented to run in baremetal
and heat context for 2 port and 4 port configuration.

configuration The ACL test cases are listed below:
• tc_prox_baremetal_acl-2.yaml
• tc_prox_baremetal_acl-4.yaml
• tc_prox_heat_context_acl-2.yaml
• tc_prox_heat_context_acl-4.yaml

Test duration is set as 300sec for each test. Packet size
set as 64 bytes in traffic profile. These can be configured

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability This PROX ACL test cases can be configured with dif-
ferent:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(ACL workload) based on the test flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 64
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 203

Yardstick, Release Latest

204 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX BNG

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_bng-{port_num}

• context = baremetal or heat_context;
• port_num = 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The BNG workload converts packets from QinQ to GRE
tunnels, handles routing and adds/removes MPLS tags.
This use case simulates a realistic and complex appli-
cation. The number of users is 32K per port and the
number of routes is 8K.
The BNG test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

configuration The BNG test cases are listed below:
• tc_prox_baremetal_bng-2.yaml
• tc_prox_baremetal_bng-4.yaml
• tc_prox_heat_context_bng-2.yaml
• tc_prox_heat_context_bng-4.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for BNG test is 78 bytes. This is set
in the BNG traffic profile and can be configured to use a
higher packet size for the test.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability The PROX BNG test cases can be configured with dif-
ferent:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(BNG workload) based on the test flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 78
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 205

Yardstick, Release Latest

206 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX BNG_QoS

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_bng_qos-{port_num}

• context = baremetal or heat_context;
• port_num = 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The BNG+QoS workload converts packets from QinQ
to GRE tunnels, handles routing and adds/removes
MPLS tags and performs a QoS. This use case simu-
lates a realistic and complex application. The number
of users is 32K per port and the number of routes is 8K.
The BNG_QoS test cases are implemented to run in
baremetal and heat context an require 4 port topology
to run the default configuration.

configuration The BNG_QoS test cases are listed below:
• tc_prox_baremetal_bng_qos-2.yaml
• tc_prox_baremetal_bng_qos-4.yaml
• tc_prox_heat_context_bng_qos-2.yaml
• tc_prox_heat_context_bng_qos-4.yaml

Test duration is set as 300sec for each test. The minu-
mum packet size for BNG_QoS test is 78 bytes. This is
set in the bng_qos traffic profile and can be configured
to use a higher packet size for the test.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability This PROX BNG_QoS test cases can be configured with
different:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(BNG_QoS workload) based on the test
flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 78
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 207

Yardstick, Release Latest

208 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX L2FWD

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_l2fwd-{port_num}

• context = baremetal or heat_context;
• port_num = 2 or 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The PROX L2FWD test has 3 types of test cases:
L2FWD: The application will take packets in from
one port and forward them unmodified to another port
L2FWD_Packet_Touch: The application will take pack-
ets in from one port, update src and dst MACs and for-
ward them to another port. L2FWD_Multi_Flow: The
application will take packets in from one port, update src
and dst MACs and forward them to another port. This
test case exercises the softswitch with 200k flows.
The above test cases are implemented for baremetal and
heat context for 2 port and 4 port configuration.

configuration The L2FWD test cases are listed below:
• tc_prox_baremetal_l2fwd-2.yaml
• tc_prox_baremetal_l2fwd-4.yaml
• tc_prox_baremetal_l2fwd_pktTouch-2.yaml
• tc_prox_baremetal_l2fwd_pktTouch-4.yaml
• tc_prox_baremetal_l2fwd_multiflow-2.yaml
• tc_prox_baremetal_l2fwd_multiflow-4.yaml
• tc_prox_heat_context_l2fwd-2.yaml
• tc_prox_heat_context_l2fwd-4.yaml
• tc_prox_heat_context_l2fwd_pktTouch-2.yaml
• tc_prox_heat_context_l2fwd_pktTouch-4.yaml
• tc_prox_heat_context_l2fwd_multiflow-2.yaml
• tc_prox_heat_context_l2fwd_multiflow-4.yaml

Test duration is set as 300sec for each test. Packet size
set as 64 bytes in traffic profile These can be configured

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability The PROX L2FWD test cases can be configured with
different:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(L2FWD workload) based on the test
flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 64
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 209

Yardstick, Release Latest

210 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX L3FWD

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_l3fwd-{port_num}

• context = baremetal or heat_context;
• port_num = 2 or 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The PROX L3FWD application performs basic routing
of packets with LPM based look-up method.
The L3FWD test cases are implemented for baremetal
and heat context for 2 port and 4 port configuration.

configuration The L3FWD test cases are listed below:
• tc_prox_baremetal_l3fwd-2.yaml
• tc_prox_baremetal_l3fwd-4.yaml
• tc_prox_heat_context_l3fwd-2.yaml
• tc_prox_heat_context_l3fwd-4.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for L3FWD test is 64 bytes. This is
set in the traffic profile and can be configured to use a
higher packet size for the test.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability This PROX L3FWD test cases can be configured with
different:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(L3FWD workload) based on the test
flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packet to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 64 byte
packets with an accepted minimal packet loss for the
default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 211

Yardstick, Release Latest

212 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX MPLS Tagging

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_mpls_tagging-{port_num}

• context = baremetal or heat_context;
• port_num = 2 or 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The PROX MPLS Tagging test will take packets in from
one port add an MPLS tag and forward them to another
port. While forwarding packets in other direction MPLS
tags will be removed.
The MPLS test cases are implemented to run in
baremetal and heat context an require 4 port topology
to run the default configuration.

configuration The MPLS Tagging test cases are listed below:
• tc_prox_baremetal_mpls_tagging-2.yaml
• tc_prox_baremetal_mpls_tagging-4.yaml
• tc_prox_heat_context_mpls_tagging-2.yaml
• tc_prox_heat_context_mpls_tagging-4.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for MPLS test is 68 bytes. This is set
in the traffic profile and can be configured to use higher
packet sizes.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability The PROX MPLS Tagging test cases can be configured
with different:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(MPLS workload) based on the test fla-
vor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 68
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 213

Yardstick, Release Latest

214 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX Packet Buffering

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_buffering-{port_num}

• context = baremetal or heat_context
• port_num = 1

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose This test measures the impact of the condition when
packets get buffered, thus they stay in memory for the
extended period of time, 125ms in this case.
The Packet Buffering test cases are implemented to run
in baremetal and heat context.
The test runs only on the first port of the SUT.

configuration The Packet Buffering test cases are listed below:
• tc_prox_baremetal_buffering-1.yaml
• tc_prox_heat_context_buffering-1.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for Buffering test is 64 bytes. This is
set in the traffic profile and can be configured to use a
higher packet size for the test.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability
The PROX Packet Buffering test cases can be configured with

different:
• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(Packet Buffering workload) based on
the test flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI in this test is the maximum number of pack-
ets that can be forwarded given the requirement that the
latency of each packet is at least 125 millisecond.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 215

Yardstick, Release Latest

216 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX Load Balancer

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_lb-{port_num}

• context = baremetal or heat_context
• port_num = 4

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The applciation transmits packets on one port and re-
vieves them on 4 ports. The conventional 5-tuple is used
in this test as it requires some extraction steps and al-
lows defining enough distinct values to find the perfor-
mance limits.
The load is increased (adding more ports if needed)
while packets are load balanced using a hash table of
8M entries
The number of packets per second that can be forwarded
determines the KPI. The default packet size is 64 bytes.

configuration The Load Balancer test cases are listed below:
• tc_prox_baremetal_lb-4.yaml
• tc_prox_heat_context_lb-4.yaml

Test duration is set as 300sec for each test. Packet size
set as 64 bytes in traffic profile. These can be configured

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability
The PROX Load Balancer test cases can be configured with

different:
• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it. The test need multi-queue enabled in
Glance image.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(Load Balancer workload) based on the
test flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 78
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 217

Yardstick, Release Latest

218 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX VPE

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_vpe-{port_num}

• context = baremetal or heat_context;
• port_num = 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The PROX VPE test handles packet processing, routing,
QinQ encapsulation, flows, ACL rules, adds/removes
MPLS tagging and performs QoS before forwarding
packet to another port. The reverse applies to forwarded
packets in the other direction.
The VPE test cases are implemented to run in baremetal
and heat context an require 4 port topology to run the
default configuration.

configuration The VPE test cases are listed below:
• tc_prox_baremetal_vpe-4.yaml
• tc_prox_heat_context_vpe-4.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for VPE test is 68 bytes. This is set
in the traffic profile and can be configured to use higher
packet sizes.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability The PROX VPE test cases can be configured with dif-
ferent:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(VPE workload) based on the test flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 68
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 219

Yardstick, Release Latest

220 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB PROX LwAFTR

NSB PROX test for NFVI characterization
test case id tc_prox_{context}_lw_aftr-{port_num}

• context = baremetal or heat_context;
• port_num = 4;

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose The PROX LW_AFTR test will take packets in from
one port and remove the ipv6 encapsulation and forward
them to another port. While forwarded packets in other
direction will be encapsulated in an ipv6 header.
The lw_aftr test cases are implemented to run in
baremetal and heat context an require 4 port topology
to run the default configuration.

configuration The LW_AFTR test cases are listed below:
• tc_prox_baremetal_lw_aftr-4.yaml
• tc_prox_heat_context_lw_aftr-4.yaml

Test duration is set as 300sec for each test. The mini-
mum packet size for MPLS test is 68 bytes. This is set
in the traffic profile and can be configured to use higher
packet sizes.

test tool PROX PROX is a DPDK application that can simulate
VNF workloads and can generate traffic and used for
NFVI characterization

applicability The PROX lwAFTR test cases can be configured with
different:

• packet sizes;
• test durations;
• tolerated loss;

Default values exist.
pre-test conditions For Openstack test case image (yardstick-samplevnfs)

needs to be installed into Glance with Prox and Dpdk
included in it.
For Baremetal tests cases Prox and Dpdk must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(LW_AFTR workload) based on the test
flavor.

step 2 Yardstick is connected with the TG and VNF by using
ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNF. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 86
bytes packet size with an accepted minimal packet loss
for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the dpdk ports.
In Heat test: Two host VMs are deleted on test comple-
tion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 221

Yardstick, Release Latest

222 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB EPC DEFAULT BEARER

NSB EPC default bearer test case
test case id tc_epc_default_bearer_landslide_{dmf_setup}

• dmf_setup: single or multi dmf test session setup;

metric All metrics provided by Spirent Landslide traffic gener-
ator

test purpose The Spirent Landslide product provides one box so-
lution which allows to fully emulate all EPC network
nodes including mobile users, network host and gener-
ate control and data plane traffic.
This test allows to check processing capability of EPC
under different levels of load (number of subscriber,
generated traffic throughput) for case when only one de-
fault bearer is using for transferring traffic from UE to
Network.
It’s easy to replace emulated node or multiple nodes
in test topology with real node or corresponding vEPC
VNF as DUT and check it’s processing capabilities un-
der specific test case load conditions.

configuration The EPC default bearer test cases are listed below:
• tc_epc_default_bearer_create_landslide.yaml
• tc_epc_default_bearer_create_landslide_multi_dmf.yaml

Test duration:
• is set as 60sec (specified in test session profile);

Traffic type:
• UDP - for single DMF test case;
• UDP and TCP - for multi DMF test case;

Packet sizes:
• 512 bytes for UDP packets;
• 1518 bytes for TCP packets;

Traffic transaction rate:
• 5 trans/s.;

Number of mobile subscribers:
• 20000;

Number of default bearers per subscriber:
• 1.

The above fields and values are the main options used
for the test case. Other configurable options could be
found in test session profile yaml file. All these options
have default values which can be overwritten in test case
file.

test tool Spirent Landslide
The Spirent Landslide is a tool for functional & per-
formance testing of different types of mobile networks.
It emulates real-world control and data traffic of mo-
bile subscribers moving through virtualized EPC net-
work. Detailed description of Spirent Landslide prod-
uct could be found here: https://www.spirent.com/
Products/Landslide

applicability This EPC DEFAULT BEARER test cases can be con-
figured with different:

• packet sizes;
• traffic transaction rate;
• number of subscribers sessions;
• number of default bearers per subscriber;
• subscribers connection rate;
• subscribers disconnection rate;
• DMF (traffic profile);
• enable/disable Fireball DMF threading model that

provides optimized performance;
Default values exist.

references ETSI-NFV-TST001
3GPP TS 32.455

pre-test conditions
• All Spirent Landslide dependencies are in-

stalled (detailed installation steps are described
in Chapter 13- nsb-installation.rst and 14-nsb-
operation.rst file for NSB Spirent Landslide vEPC
tests;

• The pod.yaml file contains all necessary informa-
tion (TAS VM IP address, NICs, emulated SUTs
and Test Nodes parameters (names, types, ip ad-
dresses, etc.).

test sequence description and expected result
step 1 Spirent Landslide components are running on the hosts

specified in the pod file.
step 2 Yardstick is connected with Spirent Landslide Test Ad-

ministration Server (TAS) by TCL and REST API. The
test will resolve the topology and instantiate all emu-
lated EPC network nodes.

step 3 Test scenarios run, which performs the following steps:
• Start emulated EPC network nodes;
• Establish subscribers connections to EPC net-

work (only default bearers are established);
• Create the sessions and transmit traffic through

EPC network nodes during the specified traffic
duration time;

• Disconnect subscribers at the end of the test.

step 4 During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

test verdict The test case will create the test session in Spirent Land-
slide with the test case parameters and store the re-
sults in the database for benchmarking purposes. The
aim is only to collect all the metrics that are provided
by Spirent Landslide product for each test specific sce-
nario.

2.17. NSB Sample Test Cases 223

https://www.spirent.com/Products/Landslide
https://www.spirent.com/Products/Landslide

Yardstick, Release Latest

224 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB EPC DEDICATED BEARER

NSB EPC dedicated bearer test case
test case id tc_epc_{initiator}_dedicated_bearer_landslide

• initiator: dedicated bearer creation initiator side
could be UE (ue) or Network (network).

metric All metrics provided by Spirent Landslide traffic gener-
ator

test purpose The Spirent Landslide product provides one box so-
lution which allows to fully emulate all EPC network
nodes including mobile users, network host and gener-
ate control and data plane traffic.
This test allows to check processing capability under
different levels of load (number of subscriber, generated
traffic throughput, etc.) for case when default and dedi-
cated bearers are creating and using for traffic transfer-
ring.
It’s easy to replace emulated node or multiple nodes
in test topology with real node or corresponding vEPC
VNF as DUT and check it’s processing capabilities un-
der specific test case load conditions.

configuration The EPC dedicated bearer test cases are listed below:
• tc_epc_ue_dedicated_bearer_create_landslide.yaml
• tc_epc_network_dedicated_bearer_create_landslide.yaml

Test duration:
• is set as 60sec (specified in test session profile);

Traffic type:
• UDP;

Packet sizes:
• 512 bytes;

Traffic transaction rate:
• 5 trans/s.;

Number of mobile subscribers:
• 20000;

Number of default bearers per subscriber:
• 1;

Number of dedicated bearers per default bearer:
• 1.

The above fields and values are the main options used
for the test case. Other configurable options could be
found in test session profile yaml file. All these options
have default values which can be overwritten in test case
file.

test tool Spirent Landslide
The Spirent Landslide is a tool for functional and
performance testing of different types of mobile net-
works. It emulates real-world control and data traf-
fic of mobile subscribers moving through virtualized
EPC network. Detailed description of Spirent Landslide
product could be found here: https://www.spirent.com/
Products/Landslide

applicability This EPC DEDICATED BEARER test cases can be
configured with different:

• packet sizes;
• traffic transaction rate;
• number of subscribers sessions;
• number of default bearers per subscriber;
• number of dedicated bearers per default;
• subscribers connection rate;
• subscribers disconnection rate;
• dedicated bearers activation timeout;
• DMF (traffic profile);
• enable/disable Fireball DMF threading model that

provides optimized performance;
Default values exist.

references ETSI-NFV-TST001
3GPP TS 32.455

pre-test conditions
• All Spirent Landslide dependencies need to be in-

stalled. The steps are described in NSB installa-
tion chapter for the Spirent Landslide vEPC tests;

• The pod.yaml file contains all necessary informa-
tion (TAS VM IP address, NICs, emulated SUTs
and Test Nodes parameters (names, types, ip ad-
dresses, etc.).

test sequence description and expected result
step 1 Spirent Landslide components are running on the hosts

specified in the pod file.
step 2 Yardstick is connected with Spirent Landslide Test Ad-

ministrator Server (TAS) by TCL and REST API. The
test will resolve the topology and instantiate all emu-
lated EPC network nodes.

step 3 Test scenarios run, which performs the following steps:
• Start the emulated EPC network nodes;
• Establish the subscribers connections to EPC net-

work (default bearers);
• Establish the number of dedicated bearers as per

per default bearer for each subscriber;
• Create the sessions and transmit traffic through

EPC network nodes during the specified traffic
duration time;

• Disconnect dedicated bearers;
• Disconnect subscribers at the end of the test.

step 4 During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

test verdict The test case will create the test session in Spirent Land-
slide with the test case parameters and store the re-
sults in the database for benchmarking purposes. The
aim is only to collect all the metrics that are provided
by Spirent Landslide product for each test specific sce-
nario.

2.17. NSB Sample Test Cases 225

https://www.spirent.com/Products/Landslide
https://www.spirent.com/Products/Landslide

Yardstick, Release Latest

226 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB EPC SAEGW RELOCATION

NSB EPC SAEGW throughput with relocation test case
test case id tc_epc_saegw_tput_relocation_landslide
metric All metrics provided by Spirent Landslide traffic gener-

ator
test purpose The Spirent Landslide product provides one box so-

lution which allows to fully emulate all EPC network
nodes including mobile users, network host and gener-
ate control and data plane traffic.
This test allows to check processing capability of EPC
handling large amount of subscribers X2 handovers be-
tween different eNBs while UEs are sending traffic.
It’s easy to replace emulated node or multiple nodes
in test topology with real node or corresponding vEPC
VNF as DUT and check it’s processing capabilities un-
der specific test case load conditions.

configuration The EPC SAEGW throughput with relocation tests are
listed below:

• tc_epc_saegw_tput_relocation_landslide.yaml
Test duration:

• is set as 60sec (specified in test session profile);
Traffic type:

• UDP;
Packet sizes:

• 512 bytes;
Traffic transaction rate:

• 5 trans/s.;
Number of mobile subscribers:

• 20000;
Number of default bearers per subscriber:

• 1;
Handover type:

• X2 handover;
Mobility time (timeout after sessions were established
after which handover will start):

• 10000ms;
Handover start type:

• When all sessions started;
Mobility mode:

• Single handoff;
Mobility Rate:

• 120 subscribers/s.
The above fields and values are the main options used
for the test case. Other configurable options could be
found in test session profile yaml file. All these options
have default values which can be overwritten in test case
file.

test tool Spirent Landslide
The Spirent Landslide is a tool for functional & per-
formance testing of different types of mobile networks.
It emulates real-world control and data traffic of mo-
bile subscribers moving through virtualized EPC net-
work. Detailed description of Spirent Landslide prod-
uct could be found here: https://www.spirent.com/
Products/Landslide

applicability This EPC UE SERVICE REQUEST test cases can be
configured with different:

• packet sizes;
• traffic transaction rate;
• number of subscribers sessions;
• handover type;
• mobility rate;
• mobility time;
• mobility mode;
• handover start condition;
• subscribers disconnection rate;

Default values exist.
references ETSI-NFV-TST001

3GPP TS 32.455
pre-test conditions

• All Spirent Landslide dependencies are in-
stalled (detailed installation steps are described
in Chapter 13- nsb-installation.rst and 14-nsb-
operation.rst file for NSB Spirent Landslide vEPC
tests;

• The pod.yaml file contains all necessary informa-
tion (TAS VM IP address, NICs, emulated SUTs
and Test Nodes parameters (names, types, ip ad-
dresses, etc.).

test sequence description and expected result
step 1 Spirent Landslide components are running on the hosts

specified in the pod file.
step 2 Yardstick is connected with Spirent Landslide Test Ad-

ministration Server (TAS) by TCL and REST API. The
test will resolve the topology and instantiate all emu-
lated EPC network nodes.

step 3 Test scenarios run, which performs the following steps:
• Start emulated EPC network nodes;
• Establish subscribers connections to EPC net-

work (default bearers);
• Start run traffic;
• After specified in test case mobility timeout, start

handover process on specified mobility rate;
• Disconnect subscribers at the end of the test.

step 4 During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

test verdict The test case will create the test session in Spirent Land-
slide with the test case parameters and store the re-
sults in the database for benchmarking purposes. The
aim is only to collect all the metrics that are provided
by Spirent Landslide product for each test specific sce-
nario.

2.17. NSB Sample Test Cases 227

https://www.spirent.com/Products/Landslide
https://www.spirent.com/Products/Landslide

Yardstick, Release Latest

228 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB EPC NETWORK SERVICE REQUEST

NSB EPC network service request test case
test case id tc_epc_network_service_request_landslide

• initiator: service request initiator side could be
UE (ue) or Network (network).

metric All metrics provided by Spirent Landslide traffic gener-
ator

test purpose The Spirent Landslide product provides one box so-
lution which allows to fully emulate all EPC network
nodes including mobile users, network host and gener-
ate control and data plane traffic.
This test covers case of network initiated service request
& allows to check processing capabilities of EPC han-
dling high amount of continuous Downlink Data Notifi-
cation messages from network to UEs which are in Idle
state.
It’s easy to replace emulated node or multiple nodes
in test topology with real node or corresponding vEPC
VNF as DUT and check it’s processing capabilities un-
der specific test case load conditions.

configuration The EPC network service request test cases are listed
below:

• tc_epc_network_service_request_landslide.yaml
Test duration:

• is set as 60sec (specified in test session profile);
Traffic type:

• UDP;
Packet sizes:

• 512 bytes;
Traffic transaction rate:

• 0.1 trans/s.;
Number of mobile subscribers:

• 20000;
Number of default bearers per subscriber:

• 1;
Idle entry time (timeout after which UE goes to Idle
state):

• 5s;
Traffic start delay:

• 1000ms.
The above fields and values are the main options used
for the test case. Other configurable options could be
found in test session profile yaml file. All these options
have default values which can be overwritten in test case
file.

test tool Spirent Landslide
The Spirent Landslide is a tool for functional & per-
formance testing of different types of mobile networks.
It emulates real-world control and data traffic of mo-
bile subscribers moving through virtualized EPC net-
work. Detailed description of Spirent Landslide prod-
uct could be found here: https://www.spirent.com/
Products/Landslide

applicability This EPC NETWORK SERVICE REQUEST test case
can be configured with different:

• packet sizes;
• traffic transaction rate;
• number of subscribers sessions;
• number of default bearers per subscriber;
• subscribers connection rate;
• subscribers disconnection rate;
• timeout after which UE goes to Idle state;
• Traffic start delay;

Default values exist.
references ETSI-NFV-TST001

3GPP TS 32.455
pre-test conditions

• All Spirent Landslide dependencies are in-
stalled (detailed installation steps are described
in Chapter 13- nsb-installation.rst and 14-nsb-
operation.rst file for NSB Spirent Landslide vEPC
tests;

• The pod.yaml file contains all necessary informa-
tion (TAS VM IP address, NICs, emulated SUTs
and Test Nodes parameters (names, types, ip ad-
dresses, etc.).

test sequence description and expected result
step 1 Spirent Landslide components are running on the hosts

specified in the pod file.
step 2 Yardstick is connected with Spirent Landslide Test Ad-

ministration Server (TAS) by TCL and REST API. The
test will resolve the topology and instantiate all emu-
lated EPC network nodes.

step 3 Test scenarios run, which performs the following steps:
• Start emulated EPC network nodes;
• Establish subscribers connections to EPC net-

work (default bearers);
• Switch UE to Idle state after specified in test case

timeout;
• Send Downlink Data Notification from network

to UE, that will return UE to active state. This
process is continuous and during whole test run
UEs will be going to Idle state and will be
switched back to active state after Downlink Data
Notification was received;

• Disconnect subscribers at the end of the test.

step 4 During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

test verdict The test case will create the test session in Spirent Land-
slide with the test case parameters and store the re-
sults in the database for benchmarking purposes. The
aim is only to collect all the metrics that are provided
by Spirent Landslide product for each test specific sce-
nario.

2.17. NSB Sample Test Cases 229

https://www.spirent.com/Products/Landslide
https://www.spirent.com/Products/Landslide

Yardstick, Release Latest

230 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB EPC UE SERVICE REQUEST

NSB EPC UE service request test case
test case id tc_epc_{initiator}_service_request_landslide

• initiator: service request initiator side could be
UE (ue) or Network (nw).

metric All metrics provided by Spirent Landslide traffic gener-
ator

test purpose The Spirent Landslide product provides one box so-
lution which allows to fully emulate all EPC network
nodes including mobile users, network host and gener-
ate control and data plane traffic.
This test allows to check processing capabilities of EPC
under high user connections rate and traffic load for
case when UEs initiates service request (UE initiates
bearer modification request to provide dedicated bearer
for new type of traffic)
It’s easy to replace emulated node or multiple nodes
in test topology with real node or corresponding vEPC
VNF as DUT and check it’s processing capabilities un-
der specific test case load conditions.

configuration The EPC ue service request test cases are listed below:
• tc_epc_ue_service_request_landslide.yaml

Test duration:
• is set as 60sec (specified in test session profile);

Traffic type:
• UDP;

Packet sizes:
• 512 bytes;

Traffic transaction rate:
• 5 trans/s.;

Number of mobile subscribers:
• 20000;

Number of default bearers per subscriber:
• 1;

Number of dedicated bearers per default bearer:
• 1.

TFT settings for dedicated bearers:
• TFT configured to filter TCP traffic (Protocol ID

6)
Modified TFT settings:

• Create new TFT to filter UDP traffic (Protocol ID
17) from 2002 local port and 2003 remote port;

Modified QoS settings:
• Set QCI 5 for dedicated bearers;

The above fields and values are the main options used
for the test case. Other configurable options could be
found in test session profile yaml file. All these options
have default values which can be overwritten in test case
file.

test tool Spirent Landslide
The Spirent Landslide is a tool for functional & per-
formance testing of different types of mobile networks.
It emulates real-world control and data traffic of mo-
bile subscribers moving through virtualized EPC net-
work. Detailed description of Spirent Landslide prod-
uct could be found here: https://www.spirent.com/
Products/Landslide

applicability This EPC UE SERVICE REQUEST test case can be
configured with different:

• packet sizes;
• traffic transaction rate;
• number of subscribers sessions;
• number of default bearers per subscriber;
• number of dedicated bearers per default;
• subscribers connection rate;
• subscribers disconnection rate;
• dedicated bearers activation timeout;
• DMF (traffic profile);
• enable/disable Fireball DMF threading model that

provides optimized performance;
• Starting TFT settings for dedicated bearers;
• Modified TFT settings for dedicated bearers;
• Modified QoS settings for dedicated bearers;

Default values exist.
references ETSI-NFV-TST001

3GPP TS 32.455
pre-test conditions

• All Spirent Landslide dependencies are in-
stalled (detailed installation steps are described
in Chapter 13- nsb-installation.rst and 14-nsb-
operation.rst file for NSB Spirent Landslide vEPC
tests;

• The pod.yaml file contains all necessary informa-
tion (TAS VM IP address, NICs, emulated SUTs
and Test Nodes parameters (names, types, ip ad-
dresses, etc.).

test sequence description and expected result
step 1 Spirent Landslide components are running on the hosts

specified in the pod file.
step 2 Yardstick is connected with Spirent Landslide Test Ad-

ministration Server (TAS) by TCL and REST API. The
test will resolve the topology and instantiate all emu-
lated EPC network nodes.

step 3 Test scenarios run, which performs the following steps:
• Start emulated EPC network nodes;
• Establish subscribers connections to EPC net-

work (default bearers);
• Establish the number of dedicated bearer as spec-

ified in the test case as per default bearer for each
subscriber;

• start run users traffic through EPC network nodes;
• During traffic is running, send bearer modifica-

tion request after specified in test case timeout;
• Disconnect dedicated bearers;
• Disconnect subscribers at the end of the test.

step 4 During test run, all the metrics provided by Spirent
Landslide are stored in the yardstick dispatcher.

test verdict The test case will create the test session in Spirent Land-
slide with the test case parameters and store the re-
sults in the database for benchmarking purposes. The
aim is only to collect all the metrics that are provided
by Spirent Landslide product for each test specific sce-
nario.

2.17. NSB Sample Test Cases 231

https://www.spirent.com/Products/Landslide
https://www.spirent.com/Products/Landslide

Yardstick, Release Latest

232 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB vFW RFC2544

NSB vFW test for VNF characterization
test case id tc_{context}_rfc2544_ipv4_1rule_1flow_{pkt_size}_{tg_type}

• context = baremetal, heat, heat_external, ovs, sriov
heat_sriov_external contexts;

• tg_type = ixia (context != heat,heat_sriov_external),
trex;

• pkt_size = 64B - all contexts; 128B, 256B,
512B, 1024B, 1280B, 1518B - (context =
heat, tg_type = ixia)

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• TG Latency;
• VNF Packets Out;
• VNF Packets In;
• VNF Packets Fwd;
• Dropped packets;

test purpose The VFW RFC2544 tests measure performance char-
acteristics of the SUT (multiple ports) and sends UDP
bidirectional traffic from all TG ports to SampleVNF
vFW application. The application forwards received
traffic based on rules provided by the user in the TC
configuration and default rules created by vFW to send
traffic from uplink ports to downlink and voice versa.

configuration The 2 ports RFC2544 test cases are listed below:
• tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml
• tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_1024B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_1280B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_128B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_1518B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_256B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_512B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml
• tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_trex.yaml
• tc_heat_sriov_external_rfc2544_ipv4_1rule_1flow_64B_trex.

yaml
• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex.yaml
• tc_ovs_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml
• tc_ovs_rfc2544_ipv4_1rule_1flow_64B_trex.yaml
• tc_sriov_rfc2544_ipv4_1rule_1flow_64B_ixia.yaml
• tc_sriov_rfc2544_ipv4_1rule_1flow_64B_trex.yaml

The 4 ports RFC2544 test cases are listed below:
• tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_ixia_4port.yaml
• tc_tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex_4port.

yaml
• tc_tc_heat_external_rfc2544_ipv4_1rule_1flow_64B_trex_4

port.yaml
• tc_tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_4port.yaml

The scale-up RFC2544 test cases are listed below:
• tc_tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale-

up.yaml
The scale-out RFC2544 test cases are listed below:

• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_scale_out.yaml
Test duration is set as 30 sec for each test and default
number of rules are applied. These can be configured

test tool The vFW is a DPDK application that performs basic fil-
tering for malformed packets and dynamic packet fil-
tering of incoming packets using the connection tracker
library.

applicability The vFW RFC2544 test cases can be configured with
different:

• packet sizes;
• test duration;
• tolerated loss;
• traffic flows;
• rules;

Default values exist.
pre-test conditions For OpenStack test case image (yardstick-samplevnf)

needs to be installed into Glance with vFW and DPDK
included in it (NSB install).
For Baremetal tests cases vFW and DPDK must be in-
stalled on the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information.
For standalone (SA) SRIOV/OvS test cases the
yardstick-samplevnf image needs to be installed on
hosts and pod.yaml file must be provided with neces-
sary system, NIC information.

test sequence Description and expected result
step 1 For Baremetal test: The TG (except IXIA) and VNF are

started on the hosts based on the pod file.
For Heat test: Two host VMs are booted, as Traffic gen-
erator and VNF(vFW) based on the test flavor. In case
of scale-out scenario the multiple VNF VMs will be
started.
For Heat external test: vFW VM is booted and TG
(except IXIA) generator is started on the external host
based on the pod file. In case of scale-out scenario the
multiple VNF VMs will be deployed.
For Heat SRIOV external test: vFW VM is booted with
network interfaces of direct type which are mapped to
VFs that are available to OpenStack. TG (except IXIA)
is started on the external host based on the pod file. In
case of scale-out scenario the multiple VNF VMs will
be deployed.
For SRIOV test: VF ports are created on host’s PFs
specified in the TC file and VM is booed using those
ports and image provided in the configuration. TG (ex-
cept IXIA) is started on other host connected to VNF
machine based on the pod file. The vFW is started in
the booted VM. In case of scale-out scenario the multi-
ple VNF VMs will be created.
For OvS-DPDK test: OvS DPDK switch is started and
bridges are created with ports specified in the TC file.
DPDK vHost ports are added to corresponding bridge
and VM is booed using those ports and image provided
in the configuration. TG (except IXIA) is started on
other host connected to VNF machine based on the pod
file. The vFW is started in the booted VM. In case of
scale-out scenario the multiple VNF VMs will be de-
ployed.

step 2 Yardstick is connected with the TG and VNF by using
ssh (in case of IXIA TG is connected via TCL inter-
face). The test will resolve the topology and instantiate
all VNFs and TG and collect the KPI’s/metrics.

step 3 The TG will send packets to the VNFs. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for differ-
ent packet size with an accepted minimal packet loss for
the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the DPDK ports.
In Heat test: All VNF VMs and TG are deleted on test
completion.
In SRIOV test: The deployed VM with vFW is de-
stroyed on the host and TG (exclude IXIA) is stopped.
In Heat SRIOV test: The deployed VM with vFW is
destroyed, VFs are released and TG (exclude IXIA) is
stopped.
In OvS test: The deployed VM with vFW is destroyed
on the host and OvS DPDK switch is stopped and ports
are unbinded. The TG (exclude IXIA) is stopped.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 233

Yardstick, Release Latest

234 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB vFW RFC2544 (correlated)

NSB vFW test for VNF characterization using correlated traffic
test case id tc_{context}_rfc2544_ipv4_1rule_1flow_64B_trex_corelated

• context = baremetal, heat

metric
• Network Throughput;
• TG Packets Out;
• TG Packets In;
• TG Latency;
• VNF Packets Out;
• VNF Packets In;
• VNF Packets Fwd;
• Dropped packets;

NOTE: For correlated TCs the TG metrics are available
on uplink ports.

test purpose The VFW RFC2544 correlated tests measure perfor-
mance characteristics of the SUT (multiple ports) and
sends UDP traffic from uplink TG ports to SampleVNF
vFW application. The application forwards received
traffic from uplink ports to downlink ports based on
rules provided by the user in the TC configuration and
default rules created by vFW. The VNF downlink traffic
is received by another UDPReplay VNF and it is mir-
rored back to the VNF on the same port. Finally, the
traffic is received back to the TG uplink port.

configuration The 2 ports RFC2544 correlated test cases are listed be-
low:

• tc_baremetal_rfc2544_ipv4_1rule_1flow_64B_trex_corelated
_traffic.yaml

Multiple VNF (2, 4, 10) RFC2544 correlated test cases
are listed below:

• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated
_scale_10.yaml

• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale
_2.yaml

• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale
_4.yaml

The scale-out RFC2544 test cases are listed below:
• tc_heat_rfc2544_ipv4_1rule_1flow_64B_trex_correlated_scale

_out.yaml
Test duration is set as 30 sec for each test and default
number of rules are applied. These can be configured

test tool The vFW is a DPDK application that performs basic fil-
tering for malformed packets and dynamic packet fil-
tering of incoming packets using the connection tracker
library.

applicability The vFW RFC2544 test cases can be configured with
different:

• packet sizes;
• test duration;
• tolerated loss;
• traffic flows;
• rules;

Default values exist.
pre-test conditions For OpenStack test case image (yardstick-samplevnf)

needs to be installed into Glance with vFW and DPDK
included in it (NSB install).
For Baremetal tests cases vFW and DPDK must be in-
stalled on the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information.

test sequence Description and expected result
step 1 For Baremetal test: The TG (except IXIA), vFW and

UDPReplay VNFs are started on the hosts based on the
pod file.
For Heat test: Three host VMs are booted, as Traffic
generator, vFW and UDPReplay VNF(vFW) based on
the test flavor. In case of scale-out scenario the multiple
vFW VNF VMs will be started.

step 2 Yardstick is connected with the TG, vFW and UDPRe-
play VNF by using ssh (in case of IXIA TG is con-
nected via TCL interface). The test will resolve the
topology and instantiate all VNFs and TG and collect
the KPI’s/metrics.

step 3 The TG will send packets to the VNFs. If the number
of dropped packets is more than the tolerated loss the
line rate or throughput is halved. This is done until the
dropped packets are within an acceptable tolerated loss.
The KPI is the number of packets per second for 64B
packet size with an accepted minimal packet loss for the
default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the DPDK ports.
In Heat test: All VNF VMs and TG are deleted on test
completion.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 235

Yardstick, Release Latest

236 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB vFW RFC3511 (HTTP)

NSB vFW test for VNF characterization based on RFC3511 and IXIA
test case id tc_{context}_http_ixload_{http_size}_Requests-

65000_{type}
• context = baremetal, heat_external
• http_size = 1b, 4k, 64k, 256k, 512k, 1024k pay-

load size
• type = Concurrency, Connections, Throughput

metric
• HTTP Total Throughput (Kbps);
• HTTP Simulated Users;
• HTTP Concurrent Connections;
• HTTP Connection Rate;
• HTTP Transaction Rate

test purpose The vFW RFC3511 tests measure performance charac-
teristics of the SUT by sending the HTTP traffic from
uplink to downlink TG ports through vFW VNF. The
application forwards received traffic based on rules pro-
vided by the user in the TC configuration and default
rules created by vFW to send traffic from uplink ports
to downlink and voice versa.

configuration The 2 ports RFC3511 test cases are listed below:
• tc_baremetal_http_ixload_1024k_Requests-

65000 _Concurrency.yaml
• tc_baremetal_http_ixload_1b_Requests-65000

_Concurrency.yaml
• tc_baremetal_http_ixload_256k_Requests-65000

_Concurrency.yaml
• tc_baremetal_http_ixload_4k_Requests-65000

_Concurrency.yaml
• tc_baremetal_http_ixload_512k_Requests-65000

_Concurrency.yaml
• tc_baremetal_http_ixload_64k_Requests-65000

_Concurrency.yaml
• tc_heat_external_http_ixload_1b_Requests-

10Gbps _Throughput.yaml
• tc_heat_external_http_ixload_1b_Requests-

65000 _Concurrency.yaml
• tc_heat_external_http_ixload_1b_Requests-

65000 _Connections.yaml
The 4 ports RFC3511 test cases are listed below:

• tc_baremetal_http_ixload_1b_Requests-65000
_Concurrency_4port.yaml

test tool The vFW is a DPDK application that performs basic fil-
tering for malformed packets and dynamic packet fil-
tering of incoming packets using the connection tracker
library.

applicability The vFW RFC3511 test cases can be configured with
different:

• http payload sizes;
• traffic flows;
• rules;

Default values exist.
pre-test conditions For OpenStack test case image (yardstick-samplevnf)

needs to be installed into Glance with vFW and DPDK
included in it (NSB install).
For Baremetal tests cases vFW and DPDK must be in-
stalled on the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information.

test sequence Description and expected result
step 1 For Baremetal test: The vFW VNF is started on the

hosts based on the pod file.
For Heat external test: The vFW VM are deployed and
booted.

step 2 Yardstick is connected with the TG (IxLoad) via IxLoad
API and VNF by using ssh. The test will resolve the
topology and instantiate all VNFs and TG and collect
the KPI’s/metrics.

step 3 The TG simulates HTTP traffic based on selected type
of TC.
Concurrency: The TC attempts to simulate some num-

ber of human users. The simulated users are grad-
ually brought online until 64K users is met (the
Ramp-Up phase), then taken offline (the Ramp
Down phase).

Connections: The TC creates some number of HTTP
connections per second. It will attempt to gener-
ate the 64K of HTTP connections per second.

Throughput: TC simultaneously transmits and re-
ceives TCP payload (bytes) at a certain rate mea-
sured in Megabits per second (Mbps), Kilobits
per second (Kbps), or Gigabits per second. The
10 Gbits is default throughput.

At the end of the TC, the KPIs are collected and stored
(depends on the selected dispatcher).

step 4 In Baremetal test: The test quits the application and un-
binds the DPDK ports.
In Heat test: All VNF VMs are deleted and connections
to TG are terminated.

test verdict The test case will try to achieve the configured HTTP
Concurrency/Throughput/Connections.

2.17. NSB Sample Test Cases 237

Yardstick, Release Latest

238 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB VPP IPSEC

NSB VPP test for vIPSEC characterization
test case id tc_baremetal_rfc2544_ipv4_{crypto_dev}_{crypto_alg}

• crypto_dev = HW_cryptodev or SW_cryptodev;
• crypto_alg = aes-gcm or cbc-sha1;

metric
• Network Throughput NDR or PDR;
• Connections Per Second (CPS);
• Latency;
• Number of tunnels;
• TG Packets Out;
• TG Packets In;
• VNF Packets Out;
• VNF Packets In;
• Dropped packets;

test purpose IPv4 IPsec tunnel mode performance test:
• Finds and reports throughput NDR (Non Drop

Rate) with zero packet loss tolerance or through-
put PDR (Partial Drop Rate) with non-zero packet
loss tolerance (LT) expressed in number of pack-
ets transmitted.

• The IPSEC test cases are implemented to run in
baremetal

configuration The IPSEC test cases are listed below:
• tc_baremetal_rfc2544_ipv4_hw_aesgcm_IMIX_trex.yaml
• tc_baremetal_rfc2544_ipv4_hw_aesgcm_trex.yaml
• tc_baremetal_rfc2544_ipv4_hw_cbcsha1_IMIX_trex.yaml
• tc_baremetal_rfc2544_ipv4_hw_cbcsha1_trex.yaml
• tc_baremetal_rfc2544_ipv4_sw_aesgcm_IMIX_trex.yaml
• tc_baremetal_rfc2544_ipv4_sw_aesgcm_trex.yaml
• tc_baremetal_rfc2544_ipv4_sw_cbcsha1_IMIX_trex.yaml
• tc_baremetal_rfc2544_ipv4_sw_cbcsha1_trex.yaml

Test duration is set as 500sec for each test. Packet size
set as 64 bytes or higher. Number of tunnels set as 1 or
higher. Number of connections set as 1 or higher These
can be configured

test tool Vector Packet Processing (VPP) The VPP platform is an
extensible framework that provides out-of-the-box pro-
duction quality switch/router functionality. Its high per-
formance, proven technology, its modularity and, flexi-
bility and rich feature set

applicability This VPP IPSEC test cases can be configured with dif-
ferent:

• packet sizes;
• test durations;
• tolerated loss;
• crypto device type;
• number of physical cores;
• number of tunnels;
• number of connections;
• encryption algorithms - integrity algorithm;

Default values exist.
pre-test conditions For Baremetal tests cases VPP and DPDK must be in-

stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
step 2 Yardstick is connected with the TG and VNF by using

ssh. The test will resolve the topology and instantiate
the VNF and TG and collect the KPI’s/metrics.

step 3 Test packets are generated by TG on links to DUTs. If
the number of dropped packets is more than the toler-
ated loss the line rate or throughput is halved. This is
done until the dropped packets are within an acceptable
tolerated loss.
The KPI is the number of packets per second for a
packet size specified in the test case with an accepted
minimal packet loss for the default configuration.

step 4 In Baremetal test: The test quits the application and un-
bind the DPDK ports.

test verdict The test case will achieve a Throughput with an ac-
cepted minimal tolerated packet loss.

2.17. NSB Sample Test Cases 239

Yardstick, Release Latest

240 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB VIMS

NSB VIMS test for vIMS characterization
test case id tc_vims_{context}_sipp

• context = baremetal or heat;

metric
• Successful registrations per second;
• Total number of active registrations per server;
• Successful de-registrations per second;
• Successful session establishments per second;
• Total number of active sessions per server;
• Mean session setup time;
• Successful re-registrations per second;

test purpose The vIMS test handles registration rate, call rate, round
trip delay, and message statistics of vIMS system.
The vIMS test cases are implemented to run in
baremetal and heat context default configuration.

configuration The vIMS test cases are listed below:
• tc_vims_baremetal_sipp.yaml
• tc_vims_heat_sipp.yaml

Each test runs one time and collects all the KPIs. The
configuration of vIMS and SIPp can be changed in each
test.

test tool SIPp
SIPp is an application that can simulate SIP scenarios,
can generate RTP traffic and used for vIMS characteri-
zation.

applicability The SIPp test cases can be configured with different:
• number of accounts;
• the call per second (cps) of SIP test;
• the holding time;
• RTP configuratioin;

pre-test conditions For Openstack test case, only vIMS is deployed by ex-
ternal heat template, SIPp needs pod.yaml file with the
necessary system and NIC information
For Baremetal tests cases SIPp and vIMS must be in-
stalled in the hosts where the test is executed. The
pod.yaml file must have the necessary system and NIC
information

test sequence description and expected result
step 1 For Baremetal test: The TG and VNF are started on the

hosts based on the pod file.
For Heat test: One host VM for vIMS is booted, based
on the test flavor. Another host for SIPp is booted as
traffic generator, based on pod.yaml file

step 2 Yardstick is connected with the vIMS and SIPp via ssh.
The test will resolve the topology, instantiate the vIMS
and SIPp and collect the KPIs/metrics.

step 3 The SIPp will run scenario tests with parameters con-
figured in test case files (tc_vims_baremetal_sipp.yaml
and tc_vims_heat_sipp.yaml files). This is done until
the KPIs of SIPp are within an acceptable threshold.

step 4 In Baremetal test: The test quits the application.
In Heat test: The host VM of vIMS is deleted on test
completion.

test verdict The test case will collect the KPIs and plot on Grafana.

2.17. NSB Sample Test Cases 241

Yardstick, Release Latest

242 Chapter 2. Yardstick User Guide

Yardstick, Release Latest

Yardstick Test Case Description: NSB vCMTS

NSB Pktgen test for vCMTS characterization
test case id tc_vcmts_k8s_pktgen
metric

• Upstream Processing (Per Service Group);
• Downstream Processing (Per Service Group);
• Upstream Throughput;
• Downstream Throughput;
• Platform Metrics;
• Power Consumption;
• Upstream Throughput Time Series;
• Downstream Throughput Time Series;
• System Summary;

test purpose
• The vCMTS test handles service groups and

packet generation containers setup, and metrics
collection.

• The vCMTS test case is implemented to run
in Kubernetes environment with vCMTS pre-
installed.

configuration The vCMTS test case configurable values are listed be-
low

• num_sg: Number of service groups (Upstream/Downstream
container pairs).

• num_tg: Number of Pktgen containers.
• vcmtsd_image: vCMTS container image

(feat/perf).
• qat_on: QAT status (true/false).

num_sg and num_tg values should be configured in the
test case file and in the topology file.

test tool Intel vCMTS Reference Dataplane Reference imple-
mentation of a DPDK-based vCMTS (DOCSIS MAC)
dataplane in a Kubernetes-orchestrated Linux Container
environment.

applicability This test cases can be configured with different:
• Number of service groups
• Number of Pktgen instances
• QAT offloading
• Feat/Perf Images for performance or features

(more data collection)
Default values exist.

pre-test conditions Intel vCMTS Reference Dataplane should be installed
and runnable on 2 nodes Kubernetes environment with
modifications to the containers to allow yardstick ssh
access, and the ConfigMaps from the original vCMTS
package deployed.

test sequence description and expected result
step 1 Yardstick is connected to the Kubernetes

Master node using the configuration file in
/etc/kubernetes/admin.yaml

step 2 The TG containers are created and started on the traffic
generator server (Master node), While the VNF contain-
ers are created and started on the data plan server.

step 3 Yardstick is connected with the TG and VNF by using
ssh. to start vCMTS-d, and Pktgen.

step 4 Yardstick connects to the running Pktgen instances to
start generating traffic using the configurations from:

/etc/yardstick/pktgen_values.yaml
and connects to the vCMTS-d containers to start the up-
stream and downstream processing using the configura-
tions from:

/etc/yardstick/vcmtsd_values.yaml

step 5 Yardstick copies vCMTS metrics regularly from the re-
mote InfluxDB (deployed by the vCMTS Package) to
the local Yardstick InfluxDB as configured in the op-
tions section in the test case file.

test verdict None. The test case will collect the KPIs and plot on
Grafana.

2.17. NSB Sample Test Cases 243

Yardstick, Release Latest

2.18 Glossary

API Application Programming Interface

Barometer OPNFV NFVi Service Assurance project. Barometer upstreams changes to collectd, OpenStack, etc to
improve features related to NFVi monitoring and service assurance. More info on: https://opnfv-barometer.
readthedocs.io/en/latest/

collectd collectd is a system statistics collection daemon. More info on: https://collectd.org/

context A context describes the environment in which a yardstick testcase will be run. It can refer to a pre-provisioned
environment, or an environment that will be set up using OpenStack or Kubernetes.

Docker Docker provisions and manages containers. Yardstick and many other OPNFV projects are deployed in
containers. Docker is required to launch the containerized versions of these projects.

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DSCP Differentiated Services Code Point

flavor A specification of virtual resources used by OpenStack in the creation of a VM instance.

Grafana A visualization tool, used in Yardstick to retrieve test data from InfluxDB and display it. Grafana works by
defining dashboards, which are combinations of visualization panes (e.g. line charts and gauges) and forms that
assist the user in formulating SQL-like queries for InfluxDB. More info on: https://grafana.com/

IGMP Internet Group Management Protocol

InfluxDB One of the Dispatchers supported by Yardstick, it allows test results to be reported to a time-series database.
More info on: https://www.influxdata.com/

IOPS Input/Output Operations Per Second A performance measurement used to benchmark storage devices.

KPI Key Performance Indicator

Kubernetes k8s Kubernetes is an open-source container-orchestration system for automating deployment, scaling
and management of containerized applications. It is one of the contexts supported in Yardstick.

MPLS Multiprotocol Label Switching

NFV Network Function Virtualization NFV is an initiative to take network services which were traditionally run on
proprietary, dedicated hardware, and virtualize them to run on general purpose hardware.

NFVI Network Function Virtualization Infrastructure The servers, routers, switches, etc on which the NFV system
runs.

NIC Network Interface Controller

NSB Network Services Benchmarking. A subset of Yardstick features concerned with NFVI and VNF characteriza-
tion.

OpenStack OpenStack is a cloud operating system that controls pools of compute, storage, and networking resources.
OpenStack is an open source project licensed under the Apache License 2.0.

PBFS Packet Based per Flow State

PROX Packet pROcessing eXecution engine

QoS Quality of Service The ability to guarantee certain network or storage requirements to satisfy a Service Level
Agreement (SLA) between an application provider and end users. Typically includes performance require-
ments like networking bandwidth, latency, jitter correction, and reliability as well as storage performance in
Input/Output Operations Per Second (IOPS), throttling agreements, and performance expectations at peak load

244 Chapter 2. Yardstick User Guide

https://opnfv-barometer.readthedocs.io/en/latest/
https://opnfv-barometer.readthedocs.io/en/latest/
https://collectd.org/
https://grafana.com/
https://www.influxdata.com/

Yardstick, Release Latest

runner The part of a Yardstick testcase that determines how the test will be run (e.g. for x iterations, y seconds or
until state z is reached). The runner also determines when the metrics are collected/reported.

SampleVNF OPNFV project providing a repository of reference VNFs. More info on: https://opnfv-samplevnf.
readthedocs.io/en/latest/

scenario The part of a Yardstick testcase that describes each test step.

SLA Service Level Agreement An SLA is an agreement between a service provider and a customer to provide a
certain level of service/performance.

SR-IOV Single Root IO Virtualization A specification that, when implemented by a physical PCIe device, enables it
to appear as multiple separate PCIe devices. This enables multiple virtualized guests to share direct access to
the physical device.

SUT System Under Test

testcase A task in Yardstick; the yaml file that is read by Yardstick to determine how to run a test.

ToS Type of Service

VLAN Virtual LAN (Local Area Network)

VM Virtual Machine An operating system instance that runs on top of a hypervisor. Multiple VMs can run at the
same time on the same physical host.

VNF Virtual Network Function

VNFC Virtual Network Function Component

2.19 References

2.19.1 OPNFV

• Parser wiki: https://wiki.opnfv.org/display/parser

• Pharos wiki: https://wiki.opnfv.org/display/pharos

• Yardstick CI: https://build.opnfv.org/ci/view/yardstick/

• Yardstick and ETSI TST001 presentation: https://wiki.opnfv.org/display/yardstick/Yardstick?preview=
%2F2925202%2F2925205%2Fopnfv_summit_-_bridging_opnfv_and_etsi.pdf

• Yardstick Project presentation: https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%
2F2925208%2Fopnfv_summit_-_yardstick_project.pdf

• Yardstick wiki: https://wiki.opnfv.org/display/yardstick

2.19.2 References used in Test Cases

• cachestat: https://github.com/brendangregg/perf-tools/tree/master/fs

• cirros-image: https://download.cirros-cloud.net

• cyclictest: https://rt.wiki.kernel.org/index.php/Cyclictest

• DPDKpktgen: https://github.com/Pktgen/Pktgen-DPDK/

• DPDK supported NICs: http://core.dpdk.org/supported/

• fdisk: http://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html

2.19. References 245

https://opnfv-samplevnf.readthedocs.io/en/latest/
https://opnfv-samplevnf.readthedocs.io/en/latest/
https://wiki.opnfv.org/display/parser
https://wiki.opnfv.org/display/pharos
https://build.opnfv.org/ci/view/yardstick/
https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925205%2Fopnfv_summit_-_bridging_opnfv_and_etsi.pdf
https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925205%2Fopnfv_summit_-_bridging_opnfv_and_etsi.pdf
https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925208%2Fopnfv_summit_-_yardstick_project.pdf
https://wiki.opnfv.org/display/yardstick/Yardstick?preview=%2F2925202%2F2925208%2Fopnfv_summit_-_yardstick_project.pdf
https://wiki.opnfv.org/display/yardstick
https://github.com/brendangregg/perf-tools/tree/master/fs
https://download.cirros-cloud.net
https://rt.wiki.kernel.org/index.php/Cyclictest
https://github.com/Pktgen/Pktgen-DPDK/
http://core.dpdk.org/supported/
http://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html

Yardstick, Release Latest

• fio: https://bluestop.org/files/fio/HOWTO.txt

• free: http://manpages.ubuntu.com/manpages/trusty/en/man1/free.1.html

• iperf3: https://iperf.fr/

• iostat: https://linux.die.net/man/1/iostat

• Lmbench man-pages: http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html

• Memory bandwidth man-pages: http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html

• mpstat man-pages: http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html

• netperf: https://hewlettpackard.github.io/netperf/

• pktgen: https://www.kernel.org/doc/Documentation/networking/pktgen.txt

• RAMspeed: http://alasir.com/software/ramspeed/

• sar: https://linux.die.net/man/1/sar

• SR-IOV: https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking

• Storperf: https://wiki.opnfv.org/display/storperf/Storperf

• unixbench: https://github.com/kdlucas/byte-unixbench/tree/master/UnixBench

2.19.3 Research

• NCSRD: http://www.demokritos.gr/?lang=en

• T-NOVA: http://www.t-nova.eu/

• T-NOVA Results: http://www.t-nova.eu/results/

2.19.4 Standards

• ETSI NFV: https://www.etsi.org/technologies-clusters/technologies/nfv

• ETSI GS-NFV TST 001: https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_
NFV-TST001v010101p.pdf

• RFC2544: https://www.ietf.org/rfc/rfc2544.txt

246 Chapter 2. Yardstick User Guide

https://bluestop.org/files/fio/HOWTO.txt
http://manpages.ubuntu.com/manpages/trusty/en/man1/free.1.html
https://iperf.fr/
https://linux.die.net/man/1/iostat
http://manpages.ubuntu.com/manpages/trusty/lat_mem_rd.8.html
http://manpages.ubuntu.com/manpages/trusty/bw_mem.8.html
http://manpages.ubuntu.com/manpages/trusty/man1/mpstat.1.html
https://hewlettpackard.github.io/netperf/
https://www.kernel.org/doc/Documentation/networking/pktgen.txt
http://alasir.com/software/ramspeed/
https://linux.die.net/man/1/sar
https://wiki.openstack.org/wiki/SR-IOV-Passthrough-For-Networking
https://wiki.opnfv.org/display/storperf/Storperf
https://github.com/kdlucas/byte-unixbench/tree/master/UnixBench
http://www.demokritos.gr/?lang=en
http://www.t-nova.eu/
http://www.t-nova.eu/results/
https://www.etsi.org/technologies-clusters/technologies/nfv
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_NFV-TST001v010101p.pdf
https://www.ietf.org/rfc/rfc2544.txt

CHAPTER

THREE

YARDSTICK DEVELOPER GUIDE

3.1 Introduction

Yardstick is a project dealing with performance testing. Yardstick produces its own test cases but can also be considered
as a framework to support feature project testing.

Yardstick developed a test API that can be used by any OPNFV project. Therefore there are many ways to contribute
to Yardstick.

You can:

• Develop new test cases

• Review codes

• Develop Yardstick API / framework

• Develop Yardstick grafana dashboards and Yardstick reporting page

• Write Yardstick documentation

This developer guide describes how to interact with the Yardstick project. The first section details the main working
areas of the project. The Second part is a list of “How to” to help you to join the Yardstick family whatever your field
of interest is.

3.1.1 Where can I find some help to start?

This guide is made for you. You can have a look at the user guide. There are also references on documenta-
tion, video tutorials, tips in the project wiki page. You can also directly contact us by mail with #yardstick
or [yardstick] prefix in the subject at opnfv-tech-discuss@lists.opnfv.org or on the IRC channel
#opnfv-yardstick.

3.2 Yardstick developer areas

3.2.1 Yardstick framework

Yardstick can be considered as a framework. Yardstick is released as a docker file, including tools, scripts and a CLI to
prepare the environement and run tests. It simplifies the integration of external test suites in CI pipelines and provides
commodity tools to collect and display results.

Since Danube, test categories (also known as tiers) have been created to group similar tests, provide consistant sub-lists
and at the end optimize test duration for CI (see How To section).

247

https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html
https://wiki.opnfv.org/display/yardstick/

Yardstick, Release Latest

The definition of the tiers has been agreed by the testing working group.

The tiers are:

• smoke

• features

• components

• performance

• vnf

3.3 How Todos?

3.3.1 How Yardstick works?

The installation and configuration of the Yardstick is described in the user guide.

3.3.2 How to work with test cases?

Sample Test cases

Yardstick provides many sample test cases which are located at samples directory of repo.

Sample test cases are designed with the following goals:

1. Helping user better understand Yardstick features (including new feature and new test capacity).

2. Helping developer to debug a new feature and test case before it is offically released.

3. Helping other developers understand and verify the new patch before the patch is merged.

Developers should upload their sample test cases as well when they are uploading a new patch which is about the
Yardstick new test case or new feature.

OPNFV Release Test cases

OPNFV Release test cases are located at yardstick/tests/opnfv/test_cases. These test cases are run by
OPNFV CI jobs, which means these test cases should be more mature than sample test cases. OPNFV scenario owners
can select related test cases and add them into the test suites which represent their scenario.

Test case Description File

This section will introduce the meaning of the Test case description file. we will use ping.yaml as a example to show
you how to understand the test case description file. This yaml file consists of two sections. One is scenarios, the
other is context.:

Sample benchmark task config file
measure network latency using ping

schema: "yardstick:task:0.1"

(continues on next page)

248 Chapter 3. Yardstick Developer Guide

https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html

Yardstick, Release Latest

(continued from previous page)

{% set provider = provider or none %}
{% set physical_network = physical_network or 'physnet1' %}
{% set segmentation_id = segmentation_id or none %}
scenarios:
-
type: Ping
options:

packetsize: 200
host: athena.demo
target: ares.demo

runner:
type: Duration
duration: 60
interval: 1

sla:
max_rtt: 10
action: monitor

context:
name: demo
image: yardstick-image
flavor: yardstick-flavor
user: ubuntu

placement_groups:
pgrp1:

policy: "availability"

servers:
athena:

floating_ip: true
placement: "pgrp1"

ares:
placement: "pgrp1"

networks:
test:

cidr: '10.0.1.0/24'
{% if provider == "vlan" %}
provider: {{provider}}
physical_network: {{physical_network}}
{% if segmentation_id %}

segmentation_id: {{segmentation_id}}
{% endif %}

{% endif %}

The contexts section is the description of pre-condition of testing. As ping.yaml shows, you can configure the
image, flavor, name, affinity and network of Test VM (servers), with this section, you will get a pre-condition env
for Testing. Yardstick will automatically setup the stack which are described in this section. Yardstick converts this
section to heat template and sets up the VMs with heat-client (Yardstick can also support to convert this section to
Kubernetes template to setup containers).

In the examples above, two Test VMs (athena and ares) are configured by keyword servers. flavorwill determine
how many vCPU, how much memory for test VMs. As yardstick-flavor is a basic flavor which will be auto-
matically created when you run command yardstick env prepare. yardstick-flavor is 1 vCPU 1G

3.3. How Todos? 249

Yardstick, Release Latest

RAM,3G Disk. image is the image name of test VMs. If you use cirros.3.5.0, you need fill the username of
this image into user. The policy of placement of Test VMs have two values (affinity and availability).
availability means anti-affinity. In the network section, you can configure which provider network and
physical_network you want Test VMs to use. You may need to configure segmentation_id when your
network is vlan.

Moreover, you can configure your specific flavor as below, Yardstick will setup the stack for you.

flavor:
name: yardstick-new-flavor
vcpus: 12
ram: 1024
disk: 2

Besides default Heat context, Yardstick also allows you to setup two other types of context. They are Node and
Kubernetes.

context:
type: Kubernetes
name: k8s

and

context:
type: Node
name: LF

The scenarios section is the description of testing steps, you can orchestrate the complex testing step through
scenarios.

Each scenario will do one testing step. In one scenario, you can configure the type of scenario (operation), runner
type and sla of the scenario.

For TC002, We only have one step, which is Ping from host VM to target VM. In this step, we also have some detailed
operations implemented (such as ssh to VM, ping from VM1 to VM2. Get the latency, verify the SLA, report the
result).

If you want to get this implementation details implement, you can check with the scenario.py file. For Ping scenario,
you can find it in Yardstick repo (yardstick/yardstick/benchmark/scenarios/networking/ping.
py).

After you select the type of scenario (such as Ping), you will select one type of runner, there are 4 types of runner.
Iteration and Duration are the most commonly used, and the default is Iteration.

For Iteration, you can specify the iteration number and interval of iteration.

runner:
type: Iteration
iterations: 10
interval: 1

That means Yardstick will repeat the Ping test 10 times and the interval of each iteration is one second.

For Duration, you can specify the duration of this scenario and the interval of each ping test.

runner:
type: Duration
duration: 60
interval: 10

250 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

That means Yardstick will run the ping test as loop until the total time of this scenario reaches 60s and the interval of
each loop is ten seconds.

SLA is the criterion of this scenario. This depends on the scenario. Different scenarios can have different SLA metric.

How to write a new test case

Yardstick already provides a library of testing steps (i.e. different types of scenario).

Basically, what you need to do is to orchestrate the scenario from the library.

Here, we will show two cases. One is how to write a simple test case, the other is how to write a quite complex test
case.

Write a new simple test case

First, you can image a basic test case description as below.

3.3. How Todos? 251

Yardstick, Release Latest

Storage Performance
metric IOPS (Average IOs performed per second), Throughput

(Average disk read/write bandwidth rate), Latency (Av-
erage disk read/write latency)

test purpose The purpose of TC005 is to evaluate the IaaS storage
performance with regards to IOPS, throughput and la-
tency.

test description fio test is invoked in a host VM on a compute blade, a
job file as well as parameters are passed to fio and fio
will start doing what the job file tells it to do.

configuration file: opnfv_yardstick_tc005.yaml
IO types is set to read, write, randwrite, randread, rw. IO
block size is set to 4KB, 64KB, 1024KB. fio is run for
each IO type and IO block size scheme, each iteration
runs for 30 seconds (10 for ramp time, 20 for runtime).
For SLA, minimum read/write iops is set to 100, mini-
mum read/write throughput is set to 400 KB/s, and max-
imum read/write latency is set to 20000 usec.

applicability This test case can be configured with different:
• IO types;
• IO block size;
• IO depth;
• ramp time;
• test duration.

Default values exist.
SLA is optional. The SLA in this test case serves as
an example. Considerably higher throughput and lower
latency are expected. However, to cover most configu-
rations, both baremetal and fully virtualized ones, this
value should be possible to achieve and acceptable for
black box testing. Many heavy IO applications start to
suffer badly if the read/write bandwidths are lower than
this.

pre-test conditions The test case image needs to be installed into Glance
with fio included in it.
No POD specific requirements have been identified.

test sequence description and expected result
step 1 A host VM with fio installed is booted.
step 2 Yardstick is connected with the host VM by using ssh.

‘fio_benchmark’ bash script is copyied from Jump Host
to the host VM via the ssh tunnel.

step 3 ‘fio_benchmark’ script is invoked. Simulated IO opera-
tions are started. IOPS, disk read/write bandwidth and
latency are recorded and checked against the SLA. Logs
are produced and stored.
Result: Logs are stored.

step 4 The host VM is deleted.
test verdict Fails only if SLA is not passed, or if there is a test case

execution problem.

TODO

252 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.3.3 How can I contribute to Yardstick?

If you are already a contributor of any OPNFV project, you can contribute to Yardstick. If you are totally new to
OPNFV, you must first create your Linux Foundation account, then contact us in order to declare you in the repository
database.

We distinguish 2 levels of contributors:

• the standard contributor can push patch and vote +1/0/-1 on any Yardstick patch

• The commitor can vote -2/-1/0/+1/+2 and merge

Yardstick commitors are promoted by the Yardstick contributors.

Gerrit & JIRA introduction

OPNFV uses Gerrit for web based code review and repository management for the Git Version Control System. You
can access OPNFV Gerrit. Please note that you need to have Linux Foundation ID in order to use OPNFV Gerrit. You
can get one from this link.

OPNFV uses JIRA for issue management. An important principle of change management is to have two-way trace-
ability between issue management (i.e. JIRA) and the code repository (via Gerrit). In this way, individual commits
can be traced to JIRA issues and we also know which commits were used to resolve a JIRA issue.

If you want to contribute to Yardstick, you can pick a issue from Yardstick’s JIRA dashboard or you can create you
own issue and submit it to JIRA.

Install Git and Git-reviews

Installing and configuring Git and Git-Review is necessary in order to submit code to Gerrit. The Getting to the code
page will provide you with some help for that.

Verify your patch locally before submitting

Once you finish a patch, you can submit it to Gerrit for code review. A developer sends a new patch to Gerrit will
trigger patch verify job on Jenkins CI. The yardstick patch verify job includes python pylint check, unit test and code
coverage test. Before you submit your patch, it is recommended to run the patch verification in your local environment
first.

Open a terminal window and set the project’s directory to the working directory using the cd command. Assume that
YARDSTICK_REPO_DIR is the path to the Yardstick project folder on your computer:

cd $YARDSTICK_REPO_DIR

Verify your patch:

tox

It is used in CI but also by the CLI.

For more details on tox and tests, please refer to the Running tests and working with tox sections below, which
describe the different available environments.

3.3. How Todos? 253

https://www.gerritcodereview.com/
http://gerrit.opnfv.org/gerrit
https://identity.linuxfoundation.org/
https://jira.opnfv.org/secure/Dashboard.jspa
https://jira.opnfv.org/secure/Dashboard.jspa
https://www.gerritcodereview.com/
https://wiki.opnfv.org/display/DEV/Developer+Getting+Started

Yardstick, Release Latest

Submit the code with Git

Tell Git which files you would like to take into account for the next commit. This is called ‘staging’ the files, by
placing them into the staging area, using the git add command (or the synonym git stage command):

git add $YARDSTICK_REPO_DIR/samples/sample.yaml

Alternatively, you can choose to stage all files that have been modified (that is the files you have worked on) since the
last time you generated a commit, by using the -a argument:

git add -a

Git won’t let you push (upload) any code to Gerrit if you haven’t pulled the latest changes first. So the next step is to
pull (download) the latest changes made to the project by other collaborators using the pull command:

git pull

Now that you have the latest version of the project and you have staged the files you wish to push, it is time to actually
commit your work to your local Git repository:

git commit --signoff -m "Title of change"

Test of change that describes in high level what was done. There is a lot of
documentation in code so you do not need to repeat it here.

JIRA: YARDSTICK-XXX

The message that is required for the commit should follow a specific set of rules. This practice allows to standardize
the description messages attached to the commits, and eventually navigate among the latter more easily.

This document happened to be very clear and useful to get started with that.

Push the code to Gerrit for review

Now that the code has been comitted into your local Git repository the following step is to push it online to Gerrit for
it to be reviewed. The command we will use is git review:

git review

This will automatically push your local commit into Gerrit. You can add Yardstick committers and contributors to
review your codes.

254 Chapter 3. Yardstick Developer Guide

https://chris.beams.io/posts/git-commit/

Yardstick, Release Latest

You can find a list Yardstick people here, or use the yardstick-reviewers and yardstick-committers
groups in gerrit.

Modify the code under review in Gerrit

At the same time the code is being reviewed in Gerrit, you may need to edit it to make some changes and then send it
back for review. The following steps go through the procedure.

Once you have modified/edited your code files under your IDE, you will have to stage them. The git status
command is very helpful at this point as it provides an overview of Git’s current state:

git status

This command lists the files that have been modified since the last commit.

You can now stage the files that have been modified as part of the Gerrit code review addi-
tion/modification/improvement using git add command. It is now time to commit the newly modified files, but
the objective here is not to create a new commit, we simply want to inject the new changes into the previous commit.
You can achieve that with the ‘–amend’ option on the git commit command:

git commit --amend

If the commit was successful, the git status command should not return the updated files as about to be commited.

The final step consists in pushing the newly modified commit to Gerrit:

git review

3.4 Backporting changes to stable branches

During the release cycle, when master and the stable/<release> branch have diverged, it may be necessary
to backport (cherry-pick) changes top the stable/<release> branch once they have merged to master. These
changes should be identified by the committers reviewing the patch. Changes should be backported as soon as possible
after merging of the original code.

..note:: Besides the commit and review process below, the Jira tick must be updated to add dual release versions and
indicate that the change is to be backported.

3.4. Backporting changes to stable branches 255

https://wiki.opnfv.org/display/yardstick/Yardstick+People

Yardstick, Release Latest

The process for backporting is as follows:

• Committer A merges a change to master (process for normal changes).

• Committer A cherry-picks the change to stable/<release> branch (if the bug has been identified for
backporting).

• The original author should review the code and verify that it still works (and give a +1).

• Committer B reviews the change, gives a +2 and merges to stable/<release>.

A backported change needs a +1 and a +2 from a committer who didn’t propose the change (i.e. minimum 3 people
involved).

3.5 Development guidelines

This section provides guidelines and best practices for feature development and bug fixing in Yardstick.

In general, bug fixes should be submitted as a single patch.

When developing larger features, all commits on the local topic branch can be submitted together, by running git
review on the tip of the branch. This creates a chain of related patches in gerrit.

Each commit should contain one logical change and the author should aim for no more than 300 lines of code per
commit. This helps to make the changes easier to review.

Each feature should have the following:

• Feature/bug fix code

• Unit tests (both positive and negative)

• Functional tests (optional)

• Sample testcases (if applicable)

• Documentation

• Update to release notes

3.5.1 Coding style

Please follow the OpenStack Style Guidelines for code contributions (the section on Internationalization (i18n) Strings
is not applicable).

When writing commit message, the OPNFV coding guidelines on git commit message style should also be used.

3.5.2 Running tests

Once your patch has been submitted, a number of tests will be run by Jenkins CI to verify the patch. Before submitting
your patch, you should run these tests locally. You can do this using tox, which has a number of different test
environments defined in tox.ini. Calling tox without any additional arguments runs the default set of tests (unit
tests, functional tests, coverage and pylint).

If some tests are failing, you can save time and select test environments individually, by passing one or more of the
following command-line options to tox:

• -e py27: Unit tests using Python 2.7

• -e py3: Unit tests using Python 3

256 Chapter 3. Yardstick Developer Guide

https://docs.openstack.org/hacking/latest/user/hacking.html
https://wiki.opnfv.org/display/DEV/Contribution+Guidelines

Yardstick, Release Latest

• -e pep8: Linter and style checks on updated files

• -e functional: Functional tests using Python 2.7

• -e functional-py3: Functional tests using Python 3

• -e coverage: Code coverage checks

Note: You need to stage your changes prior to running coverage for those changes to be checked.

In addition to the tests run by Jenkins (listed above), there are a number of other test environments defined.

• -e pep8-full: Linter and style checks are run on the whole repo (not just on updated files)

• -e os-requirements: Check that the requirements are compatible with OpenStack requirements.

Working with tox

tox uses virtualenv to create isolated Python environments to run the tests in. The test environments are located at
.tox/<environment_name> e.g. .tox/py27.

If requirements are changed, you will need to recreate the tox test environment to make sure the new requirements are
installed. This is done by passing the additional -r command-line option to tox:

tox -r -e ...

This can also be achieved by deleting the test environments manually before running tox:

rm -rf .tox/<environment_name>
rm -rf .tox/py27

3.5.3 Writing unit tests

For each change submitted, a set of unit tests should be submitted, which should include both positive and negative
testing.

In order to help identify which tests are needed, follow the guidelines below.

• In general, there should be a separate test for each branching point, return value and input set.

• Negative tests should be written to make sure exceptions are raised and/or handled appropriately.

The following convention should be used for naming tests:

test_<method_name>_<some_comment>

The comment gives more information on the nature of the test, the side effect being checked, or the parameter being
modified:

test_my_method_runtime_error
test_my_method_invalid_credentials
test_my_method_param1_none

3.5. Development guidelines 257

https://virtualenv.pypa.io/en/stable/

Yardstick, Release Latest

Mocking

The mock library is used for unit testing to stub out external libraries.

The following conventions are used in Yardstick:

• Use mock.patch.object instead of mock.patch.

• When naming mocked classes/functions, use mock_<class_and_function_name> e.g.
mock_subprocess_call

• Avoid decorating classes with mocks. Apply the mocking in setUp():

@mock.patch.object(ssh, 'SSH')
class MyClassTestCase(unittest.TestCase):

should be:

class MyClassTestCase(unittest.TestCase):
def setUp(self):

self._mock_ssh = mock.patch.object(ssh, 'SSH')
self.mock_ssh = self._mock_ssh.start()

self.addCleanup(self._stop_mocks)

def _stop_mocks(self):
self._mock_ssh.stop()

3.6 Plugins

For information about Yardstick plugins, refer to the chapter Installing a plug-in into Yardstick in the user guide.

3.7 Introduction

This document describes the steps to create a new NSB PROX test based on existing PROX functionalities. NSB
PROX provides is a simple approximation of an operation and can be used to develop best practices and TCO models
for Telco customers, investigate the impact of new Intel compute, network and storage technologies, characterize
performance, and develop optimal system architectures and configurations.

NSB PROX Supports Baremetal, Openstack and standalone configuration.

Contents

• Introduction

• Prerequisites

• Sample Prox Test Hardware Architecture

• Prox Test Architecture

• NSB Prox Test

– Test Description File

– Test Description File for Baremetal

258 Chapter 3. Yardstick Developer Guide

https://artifacts.opnfv.org/yardstick/docs/testing_user_userguide/index.html

Yardstick, Release Latest

– Traffic Profile File

– Test Description File for Openstack

– Test Description File for Standalone

– Traffic Generator Config file

– SUT Config File

– Baremetal Configuration File

– Grafana Dashboard

• How to run NSB Prox Test on an baremetal environment

• How to run NSB Prox Test on an Openstack environment

• Frequently Asked Questions

– NSB Prox does not work on Baremetal, How do I resolve this?

– How do I debug NSB Prox on Baremetal?

– NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

– How do I debug NSB Prox on Openstack?

– How do I resolve “Quota exceeded for resources”

– Openstack CLI fails or hangs. How do I resolve this?

– How to Understand the Grafana output?

3.8 Prerequisites

In order to integrate PROX tests into NSB, the following prerequisites are required.

• A working knowledge of Yardstick. See yardstick wiki page.

• A working knowledge of PROX. See Prox documentation.

• Knowledge of Openstack. See openstack wiki page.

• Knowledge of how to use Grafana. See grafana getting started.

• How to Deploy InfluxDB & Grafana. See grafana deployment.

• How to use Grafana in OPNFV/Yardstick. See opnfv grafana dashboard.

• How to install NSB. See NSB Installation

3.9 Sample Prox Test Hardware Architecture

The following is a diagram of a sample NSB PROX Hardware Architecture for both NSB PROX on Bare metal and
on Openstack.

In this example when running yardstick on baremetal, yardstick will run on the deployment node, the generator will
run on the deployment node and the SUT(SUT) will run on the Controller Node.

3.8. Prerequisites 259

https://wiki.opnfv.org/display/yardstick/
https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation
https://wiki.openstack.org/wiki/Main_Page
http://docs.grafana.org/guides/gettingstarted/
https://wiki.opnfv.org/display/yardstick/How+to+deploy+InfluxDB+and+Grafana+locally
https://wiki.opnfv.org/display/yardstick/How+to+work+with+grafana+dashboard
http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation

Yardstick, Release Latest

3.10 Prox Test Architecture

In order to create a new test, one must understand the architecture of the test.

A NSB Prox test architecture is composed of:

• A traffic generator. This provides blocks of data on 1 or more ports to the SUT. The traffic generator also
consumes the result packets from the system under test.

• A SUT consumes the packets generated by the packet generator, and applies one or more tasks to the packets
and return the modified packets to the traffic generator.

This is an example of a sample NSB PROX test architecture.

260 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.10. Prox Test Architecture 261

Yardstick, Release Latest

This diagram is of a sample NSB PROX test application.

• Traffic Generator

– Generator Tasks - Composted of 1 or more tasks (It is possible to have multiple tasks sending packets to
same port No. See Tasks Ai and Aii plus Di and Dii)

* Task Ai - Generates Packets on Port 0 of Traffic Generator and send to Port 0 of SUT Port 0

* Task Aii - Generates Packets on Port 0 of Traffic Generator and send to Port 0 of SUT Port 0

* Task B - Generates Packets on Port 1 of Traffic Generator and send to Port 1 of SUT Port 1

* Task C - Generates Packets on Port 2 of Traffic Generator and send to Port 2 of SUT Port 2

* Task Di - Generates Packets on Port 3 of Traffic Generator and send to Port 3 of SUT Port 3

* Task Dii - Generates Packets on Port 0 of Traffic Generator and send to Port 0 of SUT Port 0

– Verifier Tasks - Composed of 1 or more tasks which receives packets from SUT

* Task E - Receives packets on Port 0 of Traffic Generator sent from Port 0 of SUT Port 0

* Task F - Receives packets on Port 1 of Traffic Generator sent from Port 1 of SUT Port 1

* Task G - Receives packets on Port 2 of Traffic Generator sent from Port 2 of SUT Port 2

* Task H - Receives packets on Port 3 of Traffic Generator sent from Port 3 of SUT Port 3

• SUT

– Receiver Tasks - Receives packets from generator - Composed on 1 or more tasks which consume the
packs sent from Traffic Generator

* Task A - Receives Packets on Port 0 of System-Under-Test from Traffic Generator Port 0, and forwards
packets to Task E

* Task B - Receives Packets on Port 1 of System-Under-Test from Traffic Generator Port 1, and forwards
packets to Task E

* Task C - Receives Packets on Port 2 of System-Under-Test from Traffic Generator Port 2, and forwards
packets to Task E

* Task D - Receives Packets on Port 3 of System-Under-Test from Traffic Generator Port 3, and forwards
packets to Task E

– Processing Tasks - Composed of multiple tasks in series which carry out some processing on received
packets before forwarding to the task.

* Task E - This receives packets from the Receiver Tasks, carries out some operation on the data and
forwards to result packets to the next task in the sequence - Task F

* Task F - This receives packets from the previous Task - Task E, carries out some operation on the data
and forwards to result packets to the next task in the sequence - Task G

* Task G - This receives packets from the previous Task - Task F and distributes the result packages to
the Transmitter tasks

– Transmitter Tasks - Composed on 1 or more tasks which send the processed packets back to the Traffic
Generator

* Task H - Receives Packets from Task G of System-Under-Test and sends packets to Traffic Generator
Port 0

* Task I - Receives Packets from Task G of System-Under-Test and sends packets to Traffic Generator
Port 1

262 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

* Task J - Receives Packets from Task G of System-Under-Test and sends packets to Traffic Generator
Port 2

* Task K - Receives Packets From Task G of System-Under-Test and sends packets to Traffic Generator
Port 3

3.11 NSB Prox Test

A NSB Prox test is composed of the following components :-

• Test Description File. Usually called tc_prox_<context>_<test>-<ports>.yaml where

– <context> is either baremetal or heat_context

– <test> is the a one or 2 word description of the test.

– <ports> is the number of ports used

Example tests tc_prox_baremetal_l2fwd-2.yaml or tc_prox_heat_context_vpe-4.yaml.
This file describes the components of the test, in the case of openstack the network description and server
descriptions, in the case of baremetal the hardware description location. It also contains the name of the Traffic
Generator, the SUT config file and the traffic profile description, all described below. See Test Description File

• Traffic Profile file. Example prox_binsearch.yaml. This describes the packet size, tolerated loss, initial
line rate to start traffic at, test interval etc See Traffic Profile File

• Traffic Generator Config file. Usually called gen_<test>-<ports>.cfg.

This describes the activity of the traffic generator

– What each core of the traffic generator does,

– The packet of data sent by a core on a port of the traffic generator to the system under test

– What core is used to wait on what port for data from the system under test.

Example traffic generator config file gen_l2fwd-4.cfg See Traffic Generator Config file

• SUT Config file. Usually called handle_<test>-<ports>.cfg.

This describes the activity of the SUTs

– What each core of the does,

– What cores receives packets from what ports

– What cores perform operations on the packets and pass the packets onto another core

– What cores receives packets from what cores and transmit the packets on the ports to the Traffic Verifier
tasks of the Traffic Generator.

Example traffic generator config file handle_l2fwd-4.cfg See SUT Config File

• NSB PROX Baremetal Configuration file. Usually called prox-baremetal-<ports>.yaml

– <ports> is the number of ports used

This is required for baremetal only. This describes hardware, NICs, IP addresses, Network drivers, usernames
and passwords. See Baremetal Configuration File

• Grafana Dashboard. Usually called Prox_<context>_<test>-<port>-<DateAndTime>.json
where

– <context> Is BM,‘‘heat‘‘,‘‘ovs_dpdk‘‘ or sriov

3.11. NSB Prox Test 263

Yardstick, Release Latest

– <test> Is the a one or 2 word description of the test.

– <port> is the number of ports used express as 2Port or 4Port

– <DateAndTime> is the Date and Time expressed as a string.

Example grafana dashboard Prox_BM_L2FWD-4Port-1507804504588.json

Other files may be required. These are test specific files and will be covered later.

3.11.1 Test Description File

Here we will discuss the test description for baremetal, openstack and standalone.

3.11.2 Test Description File for Baremetal

This section will introduce the meaning of the Test case description file. We will use
tc_prox_baremetal_l2fwd-2.yaml as an example to show you how to understand the test description
file.

264 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

Now let’s examine the components of the file in detail

1. traffic_profile - This specifies the traffic profile for the test. In this case prox_binsearch.yaml is
used. See Traffic Profile File

2. topology - This is either prox-tg-topology-1.yaml or prox-tg-topology-2.yaml or
prox-tg-topology-4.yaml depending on number of ports required.

3.11. NSB Prox Test 265

Yardstick, Release Latest

3. nodes - This names the Traffic Generator and the System under Test. Does not need to change.

4. interface_speed_gbps - This is an optional parameter. If not present the system defaults to 10Gbps. This
defines the speed of the interfaces.

5. collectd - (Optional) This specifies we want to collect NFVI statistics like CPU Utilization,

6. prox_path - Location of the Prox executable on the traffic generator (Either baremetal or Openstack Virtual
Machine)

7. prox_config - This is the SUT Config File. In this case it is handle_l2fwd-2.cfg

A number of additional parameters can be added. This example is for VPE:

options:
interface_speed_gbps: 10

traffic_config:
tolerated_loss: 0.01
test_precision: 0.01
packet_sizes: [64]
duration: 30
lower_bound: 0.0
upper_bound: 100.0

vnf__0:
prox_path: /opt/nsb_bin/prox
prox_config: ``configs/handle_vpe-4.cfg``
prox_args:

``-t``: ````
prox_files:

``configs/vpe_ipv4.lua`` : ````
``configs/vpe_dscp.lua`` : ````
``configs/vpe_cpe_table.lua`` : ````
``configs/vpe_user_table.lua`` : ````
``configs/vpe_rules.lua`` : ````

prox_generate_parameter: True

``interface_speed_gbps`` - this specifies the speed of the interface
in Gigabits Per Second. This is used to calculate pps(packets per second).
If the interfaces are of different speeds, then this specifies the speed
of the slowest interface. This parameter is optional. If omitted the
interface speed defaults to 10Gbps.

``traffic_config`` - This allows the values here to override the values in
in the traffic_profile file. e.g. "prox_binsearch.yaml". Values provided
here override values provided in the "traffic_profile" section of the
traffic_profile file. Some, all or none of the values can be provided here.

The values describes the packet size, tolerated loss, initial line rate
to start traffic at, test interval etc See `Traffic Profile File`_

``prox_files`` - this specified that a number of addition files
need to be provided for the test to run correctly. This files
could provide routing information,hashing information or a
hashing algorithm and ip/mac information.

``prox_generate_parameter`` - this specifies that the NSB application
is required to provide information to the nsb Prox in the form

(continues on next page)

266 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

(continued from previous page)

of a file called ``parameters.lua``, which contains information
retrieved from either the hardware or the openstack configuration.

8. prox_args - this specifies the command line arguments to start prox. See prox command line.

9. prox_config - This specifies the Traffic Generator config file.

10. runner - This is set to ProxDuration - This specifies that the test runs for a set duration. Other runner
types are available but it is recommend to use ProxDuration. The following parameters are supported

interval - (optional) - This specifies the sampling interval. Default is 1 sec

sampled - (optional) - This specifies if sampling information is required. Default no

duration - This is the length of the test in seconds. Default is 60 seconds.

confirmation - This specifies the number of confirmation retests to be made before deciding to increase or
decrease line speed. Default 0.

11. context - This is context for a 2 port Baremetal configuration.

If a 4 port configuration was required then file prox-baremetal-4.yaml would be used. This is the
NSB Prox baremetal configuration file.

3.11.3 Traffic Profile File

This describes the details of the traffic flow. In this case prox_binsearch.yaml is used.

1. name - The name of the traffic profile. This name should match the name specified in the traffic_profile
field in the Test Description File.

2. traffic_type - This specifies the type of traffic pattern generated, This name matches class name of the
traffic generator. See:

network_services/traffic_profile/prox_binsearch.py class
→˓ProxBinSearchProfile(ProxProfile)

In this case it lowers the traffic rate until the number of packets sent is equal to the number of packets received
(plus a tolerated loss). Once it achieves this it increases the traffic rate in order to find the highest rate with no
traffic loss.

Custom traffic types can be created by creating a new traffic profile class.

3. tolerated_loss - This specifies the percentage of packets that can be lost/dropped before we declare suc-
cess or failure. Success is Transmitted-Packets from Traffic Generator is greater than or equal to packets received
by Traffic Generator plus tolerated loss.

3.11. NSB Prox Test 267

https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#Command_line_options

Yardstick, Release Latest

4. test_precision - This specifies the precision of the test results. For some tests the success criteria may
never be achieved because the test precision may be greater than the successful throughput. For finer results
increase the precision by making this value smaller.

5. packet_sizes - This specifies the range of packets size this test is run for.

6. duration - This specifies the sample duration that the test uses to check for success or failure.

7. lower_bound - This specifies the test initial lower bound sample rate. On success this value is increased.

8. upper_bound - This specifies the test initial upper bound sample rate. On success this value is decreased.

Other traffic profiles exist eg prox_ACL.yaml which does not compare what is received with what is transmitted. It
just sends packet at max rate.

It is possible to create custom traffic profiles with by creating new file in the same folder as prox_binsearch.yaml. See
this prox_vpe.yaml as example:

schema: ``nsb:traffic_profile:0.1``

name: prox_vpe
description: Prox vPE traffic profile

traffic_profile:
traffic_type: ProxBinSearchProfile
tolerated_loss: 100.0 #0.001
test_precision: 0.01

The minimum size of the Ethernet frame for the vPE test is 68 bytes.
packet_sizes: [68]
duration: 5
lower_bound: 0.0
upper_bound: 100.0

3.11.4 Test Description File for Openstack

We will use tc_prox_heat_context_l2fwd-2.yaml as a example to show you how to understand the test
description file.

268 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.11. NSB Prox Test 269

Yardstick, Release Latest

270 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

Now lets examine the components of the file in detail

Sections 1 to 9 are exactly the same in Baremetal and in Heat. Section 10 is replaced with sections A to F. Section 10
was for a baremetal configuration file. This has no place in a heat configuration.

A. image - yardstick-samplevnfs. This is the name of the image created during the installation of NSB. This is
fixed.

B. flavor - The flavor is created dynamically. However we could use an already existing flavor if required. In
that case the flavor would be named:

flavor: yardstick-flavor

C. extra_specs - This allows us to specify the number of cores sockets and hyperthreading assigned to it. In
this case we have 1 socket with 10 codes and no hyperthreading enabled.

D. placement_groups - default. Do not change for NSB PROX.

E. servers - tg_0 is the traffic generator and vnf_0 is the system under test.

F. networks - is composed of a management network labeled mgmt and one uplink network labeled uplink_0
and one downlink network labeled downlink_0 for 2 ports. If this was a 4 port configuration there would be
2 extra downlink ports. See this example from a 4 port l2fwd test.:

networks:
mgmt:

cidr: '10.0.1.0/24'
uplink_0:

cidr: '10.0.2.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

downlink_0:
cidr: '10.0.3.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

uplink_1:
cidr: '10.0.4.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

downlink_1:
cidr: '10.0.5.0/24'
gateway_ip: 'null'
port_security_enabled: False
enable_dhcp: 'false'

3.11.5 Test Description File for Standalone

We will use tc_prox_ovs-dpdk_l2fwd-2.yaml as a example to show you how to understand the test descrip-
tion file.

3.11. NSB Prox Test 271

Yardstick, Release Latest

272 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.11. NSB Prox Test 273

Yardstick, Release Latest

Now lets examine the components of the file in detail

Sections 1 to 9 are exactly the same in Baremetal and in Heat. Section 10 is replaced with sections A to F. Section 10
was for a baremetal configuration file. This has no place in a heat configuration.

A. file - Pod file for Baremetal Traffic Generator configuration: IP Address, User/Password & Interfaces

B. type - This defines the type of standalone configuration. Possible values are StandaloneOvsDpdk or
StandaloneSriov

C. file - Pod file for Standalone host configuration: IP Address, User/Password & Interfaces

D. vm_deploy - Deploy a new VM or use an existing VM

E. ovs_properties - OVS Version, DPDK Version and configuration to use.

F. flavor- NSB image generated when installing NSB using ansible-playbook:

ram- Configurable RAM for SUT VM
extra_specs
hw:cpu_sockets - Configurable number of Sockets for SUT VM
hw:cpu_cores - Configurable number of Cores for SUT VM
hw:cpu_threads- Configurable number of Threads for SUT VM

G. mgmt - Management port of the SUT VM. Preconfig needed on TG & SUT host machines. is the system under
test.

H. xe0 - Upline Network port

I. xe1 - Downline Network port

J. uplink_0 - Uplink Phy port of the NIC on the host. This will be used to create the Virtual Functions.

K. downlink_0 - Downlink Phy port of the NIC on the host. This will be used to create the Virtual Functions.

3.11.6 Traffic Generator Config file

This section will describe the traffic generator config file. This is the same for both baremetal and heat. See this
example of gen_l2fwd_multiflow-2.cfg to explain the options.

274 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

The configuration file is divided into multiple sections, each of which is used to define some parameters and options.:

[eal options]
[variables]
[port 0]
[port 1]
[port .]
[port Z]
[defaults]
[global]
[core 0]
[core 1]
[core 2]
[core .]
[core Z]

See prox options for details

Now let’s examine the components of the file in detail

1. [eal options] - This specified the EAL (Environmental Abstraction Layer) options. These are default

3.11. NSB Prox Test 275

https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D

Yardstick, Release Latest

values and are not changed. See dpdk wiki page.

2. [variables] - This section contains variables, as the name suggests. Variables for Core numbers, mac
addresses, ip addresses etc. They are assigned as a key = value where the key is used in place of the value.

Caution: A special case for valuables with a value beginning with @@. These values are dynamically
updated by the NSB application at run time. Values like MAC address, IP Address etc.

3. [port 0] - This section describes the DPDK Port. The number following the keyword port usually refers
to the DPDK Port Id. usually starting from 0. Because you can have multiple ports this entry usually repeated.
Eg. For a 2 port setup [port0] and [port 1] and for a 4 port setup [port 0], [port 1], [port 2]
and [port 3]:

[port 0]
name=p0
mac=hardware
rx desc=2048
tx desc=2048
promiscuous=yes

a. In this example name = p0 assigned the name p0 to the port. Any name can be assigned to a port.

b. mac=hardware sets the MAC address assigned by the hardware to data from this port.

c. rx desc=2048 sets the number of available descriptors to allocate for receive packets. This can be
changed and can effect performance.

d. tx desc=2048 sets the number of available descriptors to allocate for transmit packets. This can be
changed and can effect performance.

e. promiscuous=yes this enables promiscuous mode for this port.

4. [defaults] - Here default operations and settings can be over written. In this example mempool size=4K
the number of mbufs per task is altered. Altering this value could effect performance. See prox options for
details.

5. [global] - Here application wide setting are supported. Things like application name, start time, duration
and memory configurations can be set here. In this example.:

[global]
start time=5
name=Basic Gen

a. ``start time=5`` Time is seconds after which average
stats will be started.

b. ``name=Basic Gen`` Name of the configuration.

6. [core 0] - This core is designated the master core. Every Prox application must have a master core. The
master mode must be assigned to exactly one task, running alone on one core.:

[core 0]
mode=master

7. [core 1] - This describes the activity on core 1. Cores can be configured by means of a set of [core #]
sections, where # represents either:

a. an absolute core number: e.g. on a 10-core, dual socket system with hyper-threading, cores are numbered
from 0 to 39.

276 Chapter 3. Yardstick Developer Guide

https://www.dpdk.org/
https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D

Yardstick, Release Latest

b. PROX allows a core to be identified by a core number, the letter ‘s’, and a socket number.

It is possible to write a baremetal and an openstack test which use the same traffic generator config file and
SUT config file. In this case it is advisable not to use physical core numbering.

However it is also possible to write NSB Prox tests that have been optimized for a particular hardware
configuration. In this case it is advisable to use the core numbering. It is up to the user to make sure that
cores from the right sockets are used (i.e. from the socket on which the NIC is attached to), to ensure good
performance (EPA).

Each core can be assigned with a set of tasks, each running one of the implemented packet processing modes.:

[core 1]
name=p0
task=0
mode=gen
tx port=p0
bps=1250000000
; Ethernet + IP + UDP
pkt inline=${sut_mac0} 70 00 00 00 00 01 08 00 45 00 00 1c 00 01 00 00 40 11 f7
→˓7d 98 10 64 01 98 10 64 02 13 88 13 88 00 08 55 7b
; src_ip: 152.16.100.0/8
random=0000XXX1
rand_offset=29
; dst_ip: 152.16.100.0/8
random=0000XXX0
rand_offset=33
random=0001001110001XXX0001001110001XXX
rand_offset=34

a. name=p0 - Name assigned to the core.

b. task=0 - Each core can run a set of tasks. Starting with 0. Task 1 can be defined later in this core
or can be defined in another [core 1] section with task=1 later in configuration file. Sometimes
running multiple task related to the same packet on the same physical core improves performance, however
sometimes it is optimal to move task to a separate core. This is best decided by checking performance.

c. mode=gen - Specifies the action carried out by this task on this core. Supported modes are: classify,
drop, gen, lat, genl4, nop, l2fwd, gredecap, greencap, lbpos, lbnetwork, lbqinq, lb5tuple, ipv6_decap,
ipv6_encap, qinqdecapv4, qinqencapv4, qos, routing, impair, mirror, unmpls, tagmpls, nat, decapnsh,
encapnsh, police, acl Which are :-

• Classify

• Drop

• Basic Forwarding (no touch)

• L2 Forwarding (change MAC)

• GRE encap/decap

• Load balance based on packet fields

• Symmetric load balancing

• QinQ encap/decap IPv4/IPv6

• ARP

• QoS

• Routing

3.11. NSB Prox Test 277

Yardstick, Release Latest

• Unmpls

• Nsh encap/decap

• Policing

• ACL

In the traffic generator we expect a core to generate packets (gen) and to receive packets & calculate
latency (lat) This core does gen . ie it is a traffic generator.

To understand what each of the modes support please see prox documentation.

d. tx port=p0 - This specifies that the packets generated are transmitted to port p0

e. bps=1250000000 - This indicates Bytes Per Second to generate packets.

f. ; Ethernet + IP + UDP - This is a comment. Items starting with ; are ignored.

g. pkt inline=${sut_mac0} 70 00 00 00 ... - Defines the packet format as a sequence of
bytes (each expressed in hexadecimal notation). This defines the packet that is generated. This pack-
ets begins with the hexadecimal sequence assigned to sut_mac and the remainder of the bytes in the
string. This packet could now be sent or modified by random=.. described below before being sent to
target.

h. ; src_ip: 152.16.100.0/8 - Comment

i. random=0000XXX1 - This describes a field of the packet containing random data. This string can be
8,16,24 or 32 character long and represents 1,2,3 or 4 bytes of data. In this case it describes a byte of data.
Each character in string can be 0,1 or X. 0 or 1 are fixed bit values in the data packet and X is a random bit.
So random=0000XXX1 generates 00000001(1), 00000011(3), 00000101(5), 00000111(7), 00001001(9),
00001011(11), 00001101(13) and 00001111(15) combinations.

j. rand_offset=29 - Defines where to place the previously defined random field.

k. ; dst_ip: 152.16.100.0/8 - Comment

l. random=0000XXX0 - This is another random field which generates a byte of 00000000(0), 00000010(2),
00000100(4), 00000110(6), 00001000(8), 00001010(10), 00001100(12) and 00001110(14) combinations.

m. rand_offset=33 - Defines where to place the previously defined random field.

n. random=0001001110001XXX0001001110001XXX - This is another random field which generates
4 bytes.

o. rand_offset=34 - Defines where to place the previously defined 4 byte random field.

Core 2 executes same scenario as Core 1. The only difference in this case is that the packets are generated for
Port 1.

8. [core 3] - This defines the activities on core 3. The purpose of core 3 and core 4 is to receive packets
sent by the SUT.:

[core 3]
name=rec 0
task=0
mode=lat
rx port=p0
lat pos=42

a. name=rec 0 - Name assigned to the core.

b. task=0 - Each core can run a set of tasks. Starting with 0. Task 1 can be defined later in this core
or can be defined in another [core 1] section with task=1 later in configuration file. Sometimes

278 Chapter 3. Yardstick Developer Guide

https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation

Yardstick, Release Latest

running multiple task related to the same packet on the same physical core improves performance, however
sometimes it is optimal to move task to a separate core. This is best decided by checking performance.

c. mode=lat - Specifies the action carried out by this task on this core. Supported modes are: acl,
classify, drop, gredecap, greencap, ipv6_decap, ipv6_encap, l2fwd, lbnetwork,
lbpos, lbqinq, nop, police, qinqdecapv4, qinqencapv4, qos, routing, impair,
lb5tuple, mirror, unmpls, tagmpls, nat, decapnsh, encapnsh, gen, genl4 and lat. This
task(0) per core(3) receives packets on port.

d. rx port=p0 - The port to receive packets on Port 0. Core 4 will receive packets on Port 1.

e. lat pos=42 - Describes where to put a 4-byte timestamp in the packet. Note that the packet length
should be longer than lat pos + 4 bytes to avoid truncation of the timestamp. It defines where the
timestamp is to be read from. Note that the SUT workload might cause the position of the timestamp to
change (i.e. due to encapsulation).

3.11.7 SUT Config File

This section will describes the SUT(VNF) config file. This is the same for both baremetal and heat. See this example
of handle_l2fwd_multiflow-2.cfg to explain the options.

3.11. NSB Prox Test 279

Yardstick, Release Latest

See prox options for details

Now let’s examine the components of the file in detail

1. [eal options] - same as the Generator config file. This specified the EAL (Environmental Abstraction
Layer) options. These are default values and are not changed. See dpdk wiki page.

2. [port 0] - This section describes the DPDK Port. The number following the keyword port usually refers
to the DPDK Port Id. usually starting from 0. Because you can have multiple ports this entry usually repeated.
E.g. For a 2 port setup [port0] and [port 1] and for a 4 port setup [port 0], [port 1], [port 2]
and [port 3]:

[port 0]
name=if0
mac=hardware
rx desc=2048
tx desc=2048
promiscuous=yes

a. In this example name =if0 assigned the name if0 to the port. Any name can be assigned to a port.

b. mac=hardware sets the MAC address assigned by the hardware to data from this port.

c. rx desc=2048 sets the number of available descriptors to allocate for receive packets. This can be
changed and can effect performance.

d. tx desc=2048 sets the number of available descriptors to allocate for transmit packets. This can be
changed and can effect performance.

e. promiscuous=yes this enables promiscuous mode for this port.

3. [defaults] - Here default operations and settings can be over written.:

[defaults]
mempool size=8K
memcache size=512

a. In this example mempool size=8K the number of mbufs per task is altered. Altering this value could
effect performance. See prox options for details.

b. memcache size=512 - number of mbufs cached per core, default is 256 this is the cache_size. Altering
this value could affect performance.

4. [global] - Here application wide setting are supported. Things like application name, start time, duration
and memory configurations can be set here. In this example.:

[global]
start time=5
name=Basic Gen

a. ``start time=5`` Time is seconds after which average stats will be
started.

b. ``name=Handle L2FWD Multiflow (2x)`` Name of the configuration.

5. [core 0] - This core is designated the master core. Every Prox application must have a master core. The
master mode must be assigned to exactly one task, running alone on one core.:

[core 0]
mode=master

280 Chapter 3. Yardstick Developer Guide

https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D
https://www.dpdk.org/
https://01.org/intel-data-plane-performance-demonstrators/documentation/prox-documentation#.5Beal_options.5D

Yardstick, Release Latest

6. [core 1] - This describes the activity on core 1. Cores can be configured by means of a set of [core #]
sections, where # represents either:

a. an absolute core number: e.g. on a 10-core, dual socket system with hyper-threading, cores are numbered
from 0 to 39.

b. PROX allows a core to be identified by a core number, the letter ‘s’, and a socket number. However NSB
PROX is hardware agnostic (physical and virtual configurations are the same) it is advisable no to use
physical core numbering.

Each core can be assigned with a set of tasks, each running one of the implemented packet processing modes.:

[core 1]
name=none
task=0
mode=l2fwd
dst mac=@@tester_mac1
rx port=if0
tx port=if1

a. name=none - No name assigned to the core.

b. task=0 - Each core can run a set of tasks. Starting with 0. Task 1 can be defined later in this core
or can be defined in another [core 1] section with task=1 later in configuration file. Sometimes
running multiple task related to the same packet on the same physical core improves performance, however
sometimes it is optimal to move task to a separate core. This is best decided by checking performance.

c. mode=l2fwd - Specifies the action carried out by this task on this core. Supported modes are: acl,
classify, drop, gredecap, greencap, ipv6_decap, ipv6_encap, l2fwd, lbnetwork,
lbpos, lbqinq, nop, police, qinqdecapv4, qinqencapv4, qos, routing, impair,
lb5tuple, mirror, unmpls, tagmpls, nat, decapnsh, encapnsh, gen, genl4 and lat. This
code does l2fwd. i.e. it does the L2FWD.

d. dst mac=@@tester_mac1 - The destination mac address of the packet will be set to the MAC address
of Port 1 of destination device. (The Traffic Generator/Verifier)

e. rx port=if0 - This specifies that the packets are received from Port 0 called if0

f. tx port=if1 - This specifies that the packets are transmitted to Port 1 called if1

In this example we receive a packet on core on a port, carry out operation on the packet on the core and transmit
it on on another port still using the same task on the same core.

On some implementation you may wish to use multiple tasks, like this.:

[core 1]
name=rx_task
task=0
mode=l2fwd
dst mac=@@tester_p0
rx port=if0
tx cores=1t1
drop=no

name=l2fwd_if0
task=1
mode=nop
rx ring=yes
tx port=if0
drop=no

3.11. NSB Prox Test 281

Yardstick, Release Latest

In this example you can see Core 1/Task 0 called rx_task receives the packet from if0 and perform the l2fwd.
However instead of sending the packet to a port it sends it to a core see tx cores=1t1. In this case it sends
it to Core 1/Task 1.

Core 1/Task 1 called l2fwd_if0, receives the packet, not from a port but from the ring. See rx ring=yes.
It does not perform any operation on the packet See mode=none and sends the packets to if0 see tx
port=if0.

It is also possible to implement more complex operations by chaining multiple operations in sequence and using
rings to pass packets from one core to another.

In this example, we show a Broadband Network Gateway (BNG) with Quality of Service (QoS). Communication
from task to task is via rings.

3.11.8 Baremetal Configuration File

This is required for baremetal testing. It describes the IP address of the various ports, the Network devices drivers and
MAC addresses and the network configuration.

In this example we will describe a 2 port configuration. This file is the same for all 2 port NSB Prox tests on the same
platforms/configuration.

282 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.11. NSB Prox Test 283

Yardstick, Release Latest

Now let’s describe the sections of the file.

1. TrafficGen - This section describes the Traffic Generator node of the test configuration. The name of the
node trafficgen_1 must match the node name in the Test Description File for Baremetal
mentioned earlier. The password attribute of the test needs to be configured. All other parameters can remain as
default settings.

2. interfaces - This defines the DPDK interfaces on the Traffic Generator.

3. xe0 is DPDK Port 0. lspci and ./dpdk-devbind.py -s can be used to provide the interface informa-
tion. netmask and local_ip should not be changed

4. xe1 is DPDK Port 1. If more than 2 ports are required then xe1 section needs to be repeated and modified
accordingly.

5. vnf - This section describes the SUT of the test configuration. The name of the node vnf must match the node
name in the Test Description File for Baremetal mentioned earlier. The password attribute of
the test needs to be configured. All other parameters can remain as default settings

6. interfaces - This defines the DPDK interfaces on the SUT

7. xe0 - Same as 3 but for the SUT.

8. xe1 - Same as 4 but for the SUT also.

9. routing_table - All parameters should remain unchanged.

10. nd_route_tbl - All parameters should remain unchanged.

3.11.9 Grafana Dashboard

The grafana dashboard visually displays the results of the tests. The steps required to produce a grafana dashboard are
described here.

a. Configure yardstick to use influxDB to store test results. See file /etc/yardstick/yardstick.
conf.

1. Specify the dispatcher to use influxDB to store results.

284 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

2. “target = .. ” - Specify location of influxDB to store results. “db_name = yardstick” - name of database.
Do not change “username = root” - username to use to store result. (Many tests are run as root) “password
= . . . ” - Please set to root user password

b. Deploy InfludDB & Grafana. See how to Deploy InfluxDB & Grafana. See grafana deployment.

c. Generate the test data. Run the tests as follows .:

yardstick --debug task start tc_prox_<context>_<test>-ports.yaml

eg.:

yardstick --debug task start tc_prox_heat_context_l2fwd-4.yaml

d. Now build the dashboard for the test you just ran. The easiest way to do this is to copy an existing dashboard
and rename the test and the field names. The procedure to do so is described here. See opnfv grafana dashboard.

3.12 How to run NSB Prox Test on an baremetal environment

In order to run the NSB PROX test.

1. Install NSB on Traffic Generator node and Prox in SUT. See NSB Installation

2. To enter container:

docker exec -it yardstick /bin/bash

3. Install baremetal configuration file (POD files)

a. Go to location of PROX tests in container

cd /home/opnfv/repos/yardstick/samples/vnf_samples/nsut/prox

b. Install prox-baremetal-2.yam and prox-baremetal-4.yaml for that topology into this directory as per
Baremetal Configuration File

c. Install and configure yardstick.conf

cd /etc/yardstick/

Modify /etc/yardstick/yardstick.conf as per yardstick-config-label

4. Execute the test. Eg.:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

3.13 How to run NSB Prox Test on an Openstack environment

In order to run the NSB PROX test.

1. Install NSB on Openstack deployment node. See NSB Installation

2. To enter container:

docker exec -it yardstick /bin/bash

3. Install configuration file

3.12. How to run NSB Prox Test on an baremetal environment 285

https://wiki.opnfv.org/display/yardstick/How+to+deploy+InfluxDB+and+Grafana+locally
https://wiki.opnfv.org/display/yardstick/How+to+work+with+grafana+dashboard
http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation
http://artifacts.opnfv.org/yardstick/docs/userguide/index.html#document-09-installation

Yardstick, Release Latest

a. Goto location of PROX tests in container

cd /home/opnfv/repos/yardstick/samples/vnf_samples/nsut/prox

b. Install and configure yardstick.conf

cd /etc/yardstick/

Modify /etc/yardstick/yardstick.conf as per yardstick-config-label

4. Execute the test. Eg.:

yardstick --debug task start ./tc_prox_heat_context_l2fwd-4.yaml

3.14 Frequently Asked Questions

Here is a list of frequently asked questions.

3.14.1 NSB Prox does not work on Baremetal, How do I resolve this?

If PROX NSB does not work on baremetal, problem is either in network configuration or test file.

1. Verify network configuration. Execute existing baremetal test.:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

If test does not work then error in network configuration.

a. Check DPDK on Traffic Generator and SUT via:-

/root/dpdk-17./usertools/dpdk-devbind.py

b. Verify MAC addresses match prox-baremetal-<ports>.yaml via ifconfig and
dpdk-devbind

c. Check your eth port is what you expect. You would not be the first person to think that the port your cable
is plugged into is ethX when in fact it is ethY. Use ethtool to visually confirm that the eth is where you
expect.:

ethtool -p ethX

A led should start blinking on port. (On both System-Under-Test and Traffic Generator)

d. Check cable.

Install Linux kernel network driver and ensure your ports are bound to the driver via dpdk-devbind.
Bring up port on both SUT and Traffic Generator and check connection.

i) On SUT and on Traffic Generator:

ifconfig ethX/enoX up

ii) Check link

ethtool ethX/enoX

See Link detected if yes Cable is good. If no you have an issue with your cable/port.

286 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

2. If existing baremetal works then issue is with your test. Check the traffic generator gen_<test>-<ports>.cfg to
ensure it is producing a valid packet.

3.14.2 How do I debug NSB Prox on Baremetal?

1. Execute the test as follows:

yardstick --debug task start ./tc_prox_baremetal_l2fwd-4.yaml

2. Login to Traffic Generator as root.:

cd
/opt/nsb_bin/prox -f /tmp/gen_<test>-<ports>.cfg

3. Login to SUT as root.:

cd
/opt/nsb_bin/prox -f /tmp/handle_<test>-<ports>.cfg

4. Now let’s examine the Generator Output. In this case the output of gen_l2fwd-4.cfg.

Now let’s examine the output

1. Indicates the amount of data successfully transmitted on Port 0

2. Indicates the amount of data successfully received on port 1

3. Indicates the amount of data successfully handled for port 1

It appears what is transmitted is received.

Caution: The number of packets MAY not exactly match because the ports are read in sequence.

3.14. Frequently Asked Questions 287

Yardstick, Release Latest

Caution: What is transmitted on PORT X may not always be received on same port. Please check the Test
scenario.

5. Now lets examine the SUT Output

Now lets examine the output

1. What is received on 0 is transmitted on 1, received on 1 transmitted on 0, received on 2 transmitted on 3
and received on 3 transmitted on 2.

2. No packets are Failed.

3. No packets are discarded.

We can also dump the packets being received or transmitted via the following commands.

dump Arguments: <core id> <task id> <nb packets>
Create a hex dump of <nb_packets> from <task_id> on

→˓<core_id> showing how
packets have changed between RX and TX.

dump_rx Arguments: <core id> <task id> <nb packets>
Create a hex dump of <nb_packets> from <task_id> on

→˓<core_id> at RX
dump_tx Arguments: <core id> <task id> <nb packets>

Create a hex dump of <nb_packets> from <task_id> on
→˓<core_id> at TX

eg.:

dump_tx 1 0 1

3.14.3 NSB Prox works on Baremetal but not in Openstack. How do I resolve this?

NSB Prox on Baremetal is a lot more forgiving than NSB Prox on Openstack. A badly formed packed may still work
with PROX on Baremetal. However on Openstack the packet must be correct and all fields of the header correct. E.g.
A packet with an invalid Protocol ID would still work in Baremetal but this packet would be rejected by openstack.

1. Check the validity of the packet.

2. Use a known good packet in your test

3. If using Random fields in the traffic generator, disable them and retry.

288 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

3.14.4 How do I debug NSB Prox on Openstack?

1. Execute the test as follows:

yardstick --debug task start --keep-deploy ./tc_prox_heat_context_l2fwd-4.yaml

2. Access docker image if required via:

docker exec -it yardstick /bin/bash

3. Install openstack credentials.

Depending on your openstack deployment, the location of these credentials may vary. On this platform I do this
via:

scp root@10.237.222.55:/etc/kolla/admin-openrc.sh .
source ./admin-openrc.sh

4. List Stack details

a. Get the name of the Stack.

b. Get the Floating IP of the Traffic Generator & SUT

This generates a lot of information. Please note the floating IP of the VNF and the Traffic Generator.

From here you can see the floating IP Address of the SUT / VNF

From here you can see the floating IP Address of the Traffic Generator

3.14. Frequently Asked Questions 289

Yardstick, Release Latest

c. Get ssh identity file

In the docker container locate the identity file.:

cd /home/opnfv/repos/yardstick/yardstick/resources/files
ls -lt

5. Login to SUT as Ubuntu.:

ssh -i ./yardstick_key-01029d1d ubuntu@172.16.2.158

Change to root:

sudo su

Now continue as baremetal.

6. Login to SUT as Ubuntu.:

ssh -i ./yardstick_key-01029d1d ubuntu@172.16.2.156

Change to root:

sudo su

Now continue as baremetal.

3.14.5 How do I resolve “Quota exceeded for resources”

This usually occurs due to 2 reasons when executing an openstack test.

1. One or more stacks already exists and are consuming all resources. To resolve

openstack stack list

Response:

+--------------------------------------+--------------------+-----------------+---
→˓-------------------+--------------+
| ID | Stack Name | Stack Status |
→˓Creation Time | Updated Time |
+--------------------------------------+--------------------+-----------------+---
→˓-------------------+--------------+
| acb559d7-f575-4266-a2d4-67290b556f15 | yardstick-e05ba5a4 | CREATE_COMPLETE |
→˓2017-12-06T15:00:05Z | None |
| 7edf21ce-8824-4c86-8edb-f7e23801a01b | yardstick-08bda9e3 | CREATE_COMPLETE |
→˓2017-12-06T14:56:43Z | None |
+--------------------------------------+--------------------+-----------------+---
→˓-------------------+--------------+

In this case 2 stacks already exist.

To remove stack:

openstack stack delete yardstick-08bda9e3
Are you sure you want to delete this stack(s) [y/N]? y

290 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

2. The openstack configuration quotas are too small.

The solution is to increase the quota. Use below to query existing quotas:

openstack quota show

And to set quota:

openstack quota set <resource>

3.14.6 Openstack CLI fails or hangs. How do I resolve this?

If it fails due to

Missing value auth-url required for auth plugin password

Check your shell environment for Openstack variables. One of them should contain the authentication URL

OS_AUTH_URL=``https://192.168.72.41:5000/v3``

Or similar. Ensure that openstack configurations are exported.

cat /etc/kolla/admin-openrc.sh

Result

export OS_PROJECT_DOMAIN_NAME=default
export OS_USER_DOMAIN_NAME=default
export OS_PROJECT_NAME=admin
export OS_TENANT_NAME=admin
export OS_USERNAME=admin
export OS_PASSWORD=BwwSEZqmUJA676klr9wa052PFjNkz99tOccS9sTc
export OS_AUTH_URL=http://193.168.72.41:35357/v3
export OS_INTERFACE=internal
export OS_IDENTITY_API_VERSION=3
export EXTERNAL_NETWORK=yardstick-public

and visible.

If the Openstack CLI appears to hang, then verify the proxys and no_proxy are set correctly. They should be similar
to

FTP_PROXY="http://<your_proxy>:<port>/"
HTTPS_PROXY="http://<your_proxy>:<port>/"
HTTP_PROXY="http://<your_proxy>:<port>/"
NO_PROXY="localhost,127.0.0.1,10.237.222.55,10.237.223.80,10.237.222.134,.ir.intel.com
→˓"
ftp_proxy="http://<your_proxy>:<port>/"
http_proxy="http://<your_proxy>:<port>/"
https_proxy="http://<your_proxy>:<port>/"
no_proxy="localhost,127.0.0.1,10.237.222.55,10.237.223.80,10.237.222.134,.ir.intel.com
→˓"

Where

1) 10.237.222.55 = IP Address of deployment node

2) 10.237.223.80 = IP Address of Controller node

3.14. Frequently Asked Questions 291

Yardstick, Release Latest

3) 10.237.222.134 = IP Address of Compute Node

3.14.7 How to Understand the Grafana output?

292 Chapter 3. Yardstick Developer Guide

Yardstick, Release Latest

A. Test Parameters - Test interval, Duration, Tolerated Loss and Test Precision

B. No. of packets send and received during test

C. Generator Stats - Average Throughput per step (Step Duration is specified by “Duration” field in A above)

D. Packet size

E. No. of packets sent by the generator per second per interface in millions of packets per second.

F. No. of packets recieved by the generator per second per interface in millions of packets per second.

G. No. of packets received by the SUT from the generator in millions of packets per second.

H. No. of packets sent by the the SUT to the generator in millions of packets per second.

I. No. of packets sent by the Generator to the SUT per step per interface in millions of packets per second.

J. No. of packets received by the Generator from the SUT per step per interface in millions of packets per second.

3.14. Frequently Asked Questions 293

Yardstick, Release Latest

K. No. of packets sent and received by the generator and lost by the SUT that meet the success criteria

L. The change in the Percentage of Line Rate used over a test, The MAX and the MIN should converge to within
the interval specified as the test-precision.

M. Packet size supported during test. If N/A appears in any field the result has not been decided.

N. The Theretical Maximum no. of packets per second that can be sent for this packet size.

O. No. of packets sent by the generator in MPPS

P. No. of packets received by the generator in MPPS

Q. No. of packets sent by SUT.

R. No. of packets received by the SUT

S. Total no. of dropped packets – Packets sent but not received back by the generator, these may be dropped by the
SUT or the generator.

T. The tolerated no. of dropped packets.

U. Test throughput in Gbps

V. Latencey per Port

• Va - Port XE0

• Vb - Port XE1

• Vc - Port XE0

• Vd - Port XE0

W. CPU Utilization

• Wa - CPU Utilization of the Generator

• Wb - CPU Utilization of the SUT

294 Chapter 3. Yardstick Developer Guide

INDEX

A
API, 244

B
Barometer, 244

C
collectd, 244
context, 244

D
Docker, 244
DPDK, 244
DPI, 244
DSCP, 244

F
flavor, 244

G
Grafana, 244

I
IGMP, 244
InfluxDB, 244
IOPS, 244

K
KPI, 244
Kubernetes, 244

M
MPLS, 244

N
NFV, 244
NFVI, 244
NIC, 244
NSB, 244

O
OpenStack, 244

P
PBFS, 244
PROX, 244

Q
QoS, 244

R
runner, 245

S
SampleVNF, 245
scenario, 245
SLA, 245
SR-IOV, 245
SUT, 245

T
testcase, 245
ToS, 245

V
VLAN, 245
VM, 245
VNF, 245
VNFC, 245

295

	Yardstick Release Note
	Yardstick Release Notes

	Yardstick User Guide
	Introduction
	Methodology
	Architecture
	Yardstick Installation
	Yardstick Usage
	Installing a plug-in into Yardstick
	Store Other Project’s Test Results in InfluxDB
	Grafana dashboard
	Yardstick Restful API
	Yardstick User Interface
	Network Services Benchmarking (NSB)
	NSB Installation
	Yardstick - NSB Testing - Operation
	Update Spirent Landslide TG configuration in pod file
	Update NSB test case definitions
	Yardstick Test Cases
	NSB Sample Test Cases
	Glossary
	References

	Yardstick Developer Guide
	Introduction
	Yardstick developer areas
	How Todos?
	Backporting changes to stable branches
	Development guidelines
	Plugins
	Introduction
	Prerequisites
	Sample Prox Test Hardware Architecture
	Prox Test Architecture
	NSB Prox Test
	How to run NSB Prox Test on an baremetal environment
	How to run NSB Prox Test on an Openstack environment
	Frequently Asked Questions

	Index

